Skip to main content
Log in

Optimization of ultra-wide band antenna by selection of substrate material using artificial neural network

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper suggests the implementation of artificial neural networks (ANNs) as a tool to design and optimize antenna for WBAN applications. Substrate selection plays a crucial role in antenna design. The substrates used in this work are RT 5880, Quartz, Rubber, RT 6010, FR-4. Further, a dataset of 198 samples has been trained and validated using the scaled conjugate gradient algorithm. The geometry of antenna is obtained as the function of input variables which are height of dielectric substrate (Hs), dielectric constant of the substrates (εr), and width & height of feed. The impedance of the antenna is used as the output variable. To optimize the design attributes of the antenna, ANN is implemented, and the mean squared error value of 0.11123 is obtained for RT 5880 as substrate having dielectric constant of 2.2 with the substrate height 3.2 mm, the width of feed 1.7 mm, and feed thickness of 0.35 mm, which are used in designing the optimized antenna. The dimensions of the antenna are 34 × 34 × 3.65 mm3. The resonant frequency for the optimized design is obtained at 6.415 & 8.999 GHz, with a gain of 4.051 dBi & 4.457 dBi, respectively, and S11 of −25.8842 dB & −18.734 dB, respectively. S11 is the reflection coefficient of an antenna that quantifies how much power is an antenna reflects. When designing an antenna, the process of selecting the substrate material and design parameters can take a long time. With the help of ANN, as discussed in this research work, the design parameters and substrate material that can provide better performance can be selected in less time, which will benefit the design engineer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Rahman, M. NagshvarianJahromi, S. Mirjavadi, A. Hamouda, Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications. Electronics 8, 158 (2019)

    Article  Google Scholar 

  2. N. Chahat, M. Zhadobov, R. Sauleau, K. Ito, A compact UWB antenna for on-body applications. IEEE Trans. Antennas Propag. 59(4), 1123–1131 (2011)

    Article  ADS  Google Scholar 

  3. Y. Lee, J.Y. Park, Y.W. Choi, H.K. Park, S.H. Cho, S.H. Cho, Y.H. Lim, A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology. Sci. Rep. 8, 13053 (2018)

    Article  ADS  Google Scholar 

  4. S. Ullah, M. Ali, A. Hussain, K.S. Kwak, Applications of UWB Technology. arXiv:0911.1681 (2009)

  5. B. Tiwari, S.H. Gupta, V. Balyan, Design and comparative analysis of compact, flexible UWB antenna using different substrate materials for WBAN applications. Appl. Phys. A 126, 858 (2020)

    Article  ADS  Google Scholar 

  6. J.R. Fernandes, and D. Wentzloff, Recent advances in IR-UWB transceivers: an overview. In proceedings of 2010 IEEE international symposium on circuits and systems (2010), pp. 3284

  7. Y. Gao, Y. Zheng, S. Diao, W.-D. Toh, C.-W. Ang, M. Je, C.-H. Heng, Low-power ultrawideband wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. Eng. 58, 768–772 (2010)

    Article  Google Scholar 

  8. C. Tsai, C. Yang, Novel compact eye-shaped UWB antennas. IEEE Antennas Wirel. Propag. Lett. 11, 184 (2012)

    Article  ADS  Google Scholar 

  9. M. Bod, H. Hassani, M.M.S. Taheri, Compact UWB printed slot antenna with extra bluetooth, GSM, and GPS bands. IEEE Antennas Wirel. Propag. Lett. 11, 531 (2012)

    Article  ADS  Google Scholar 

  10. Y. Sung, UWB monopole antenna with two notched bands based on the folded stepped impedance resonator. IEEE Antennas Wirel. Propag. Lett. 11, 500 (2012)

    Article  ADS  Google Scholar 

  11. S.R. Emadian, C. Ghobadi, J. Nourinia, M.H. Mirmozafari, J. Pourahmadazar, Bandwidth enhancement of CPW-fed circle-like slot antenna with dual band-notched characteristic. IEEE Antennas Wirel. Propag. Lett. 11, 543 (2012)

    Article  ADS  Google Scholar 

  12. T. Nguyen, N.H. Lee, H.C. Park, Very compact printed triple band-notched UWB antenna with quarter-wavelength slots. IEEE Antennas Wirel. Propag. Lett 11, 411–414 (2012)

    Article  ADS  Google Scholar 

  13. L.N. Zhang, S.S. Zhong, X.L. Liang, C.Z. Du, Compact omnidirectional band-notch ultra-wideband antenna. Electron. Lett. 45, 659–660 (2009)

    Article  ADS  Google Scholar 

  14. O. Ahmed, A.-R. Sebak, A printed monopole antenna with two steps and a circular Slot for UWB applications. IEEE Antennas Wirel. Propag. Lett. 7, 411–413 (2008)

    Article  ADS  Google Scholar 

  15. R. Azim, M.T. Islam, N. Misran, Compact tapered-shape slot antenna for UWB applications. IEEE Antennas Wirel. Propag. Lett. 10, 1190–1193 (2011)

    Article  ADS  Google Scholar 

  16. F. Grenez, M.V. Villarejo, B. Garcia-Zapirain, A. Méndez-Zorrilla, Wireless prototype based on pressure and bending sensors for measuring gate quality. Sensors 13, 9679–9703 (2013)

    Article  ADS  Google Scholar 

  17. L. Lopez-Samaniego, B. Garcia-Zapirain, A robot-based tool for physical and cognitive rehabilitation of elderly people using biofeedback. Int. J. Environ. Res. Public Heal. 13, 1176 (2016)

    Article  Google Scholar 

  18. G. Eguíluz, B.G. Zapirain, Use of a time-of-flight camera with an omek beckon framework to analyze, evaluate and correct in real-time the verticality of multiple sclerosis patients during exercise. Int. J. Environ. Res. Public Health 10, 5807–5829 (2013)

    Article  Google Scholar 

  19. R. Bharadwaj, S. Swaisaenyakorn, C. Parini, J.C. Batchelor, A. Alomainy, Impulse radio ultra-wideband communications for localization and tracking of human body and limbs movement for healthcare applications. IEEE Trans. Antennas Propag. 65, 7298–7309 (2017)

    Article  ADS  Google Scholar 

  20. Q. Rubani, S.H. Gupta, A. Kumar, Design and analysis of circular patch antenna for WBAN at terahertz frequency. Optik 185, 529–536 (2019)

    Article  ADS  Google Scholar 

  21. M.F. Pantoja, A.R. Bretones, F.G. Ruiz, S.G. Garcia, R.G. Martin, Particle-swarm optimization in antenna design: optimization of log-periodic dipole arrays. IEEE Antennas Propag. Mag. 49(4), 34–47 (2007)

    Article  ADS  Google Scholar 

  22. Y. Li, Simulation-based evolutionary method in antenna design optimization. Math. Comput. Model. 51(8), 944 (2010)

    Article  Google Scholar 

  23. M.O. Akinsolu, K.K. Mistry, B. Liu, P.I. Lazaridis, and P. Excell, “Machine learning-assisted antenna design optimization: a review and the state-of-the-art.” 2020 14th European conference on antennas and propagation (EuCAP), pp. 1–5 (2020)

  24. S. Koziel, S. Ogurtsov, S. Szczepanski, Rapid antenna design optimization using shape-preserving response prediction. Bull. Polish Academy Sci. Technical Sci. 60, 143–149 (2012)

    Google Scholar 

  25. N. Chavda, V. Dwivedi, K. Parma, Designing of microstrip patch antenna for 3G-WCDMA applications. Diamond 1, 2–53 (2013)

    Google Scholar 

  26. D.M. Pozar, Microstrip antennas. Proc. IEEE 80(1), 79–91 (1992)

    Article  ADS  Google Scholar 

  27. G. Kaur, V. Mehta, E. Sidhu, Rectangular terahertz microstrip patch antenna design for vitamin K2 detection applications. In 2017 1st international conference on electronics, materials engineering and nano-technology (IEMENTech), IEEE, pp. 1–3, (2017)

  28. S. Kaur, R. Khanna, P. Sahni, N. Kumar, Design and optimization of microstrip patch antenna using artificial neural networks. Int. J. Innov. Technol. Explor. Eng. 8, 2278–3075 (2019). https://doi.org/10.35940/ijitee.I1097.0789S19

    Article  Google Scholar 

  29. M. Mishra, and M. Srivastava, “A view of Artificial Neural Network.” 2014 international conference on advances in engineering & technology research (ICAETR–2014), pp. 1–3, DOI: https://doi.org/10.1109/ICAETR.2014.7012785 (2014)

  30. Fajr, A. Rajawat, S.H. Gupta, Design and optimization of THz antenna for on-body WBAN applications. Optik 223, 165563 (2020)

    Article  ADS  Google Scholar 

  31. R. Garg, V.S. Reddy, Edge feeding of microstrip ring antennas. IEEE Trans. Antennas Propag. 51(8), 1941–1946 (2003)

    Article  ADS  Google Scholar 

  32. M.A. Saed, R. Yadla, Microstrip-fed low profile and compact dielectric resonator antennas. Progress Electromagn. Res. 56, 151–162 (2006)

    Article  Google Scholar 

  33. S. Sodhi, P. Chabra, Effect and design of microstrip patch antenna with defected ground structure. Int. J. Eng. Res. (2020). https://doi.org/10.17577/IJERTV9IS020200

    Article  Google Scholar 

  34. M.K. Khandelwal, B.K. Kanaujia, S. Kumar, Defected ground structure: fundamentals, analysis, and applications in modern wireless trends. Int. J. Antennas Propag. 2017, 22 (2017)

    Article  Google Scholar 

  35. S. Ramamurthy, D. Gopal, Effect of slot size variations on microstrip patch antenna performance for 5G applications. Int. J. Adv. Res. Electron. Commun. Eng. (IJARECE) 7(10), 2278–2909 (2018)

    Google Scholar 

  36. C.A. Balanis, Antenna theory: analysis and design, 3rd edn. (Wiley, Hoboken, NJ, USA, 2005)

    Google Scholar 

  37. Y.I.A. Al-Yasir, M.K. Alkhafaji, H.A. Alhamadani, N.O. Parchin, I. Elfergani, A.L. Saleh, J. Rodriguez, R.A. Abd-Alhameed, A new and compact wide-band microstrip filter-antenna design for 2.4 GHz ISM band and 4G applications. Electronics 9(7), 1084 (2020)

    Article  Google Scholar 

  38. D. Chaturvedi, S. Raghavan, A compact metamaterial-inspired antenna for WBAN application. Wireless Pers. Commun. 105, 1449–1460 (2019)

    Article  Google Scholar 

  39. Y. Chen, T. Ku, A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications. IEEE Antennas Wirel. Propag. Lett. 15, 1144–1147 (2016)

    Article  ADS  Google Scholar 

  40. P. Reis, and H.G. Virani, “Design of a compact microstrip patch antenna of FR-4 substrate for wireless applications.” 2020 international conference on electronics and sustainable communication systems (ICESC), pp. 713–716, (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Uday Ashish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashish, P.U., Gupta, S.H. Optimization of ultra-wide band antenna by selection of substrate material using artificial neural network. Appl. Phys. A 128, 192 (2022). https://doi.org/10.1007/s00339-022-05312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05312-7

Keywords

Navigation