Skip to main content
Log in

Accurate and fully analytical expressions for quantum energy levels in finite potential wells for nanoelectronic compact modeling

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we present fully analytical closed-form expressions to provide the energy levels of finite quantum wells. The model accounts for unequal electronic effective masses in the well and barrier regions. The analytical expressions were validated by comparing the results provided by our model with those arising from the numerical solution of the eigenenergy transcendental equations. As a result, excellent accuracy is demonstrated within the parameter space investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shockley, W.: U.S. Patent No. 2569347 (1951)

  2. Kroemer, H.: Theory of a Wide-Gap Emitter for Transistors, Proceedings of the IRE, pp. 1535–1537 (1957)

  3. Esaki, L., Tsu, R.: Superlattice and negative conductivity in semiconductors. IBM Research Note RC-2418 (1969)

  4. Esaki, L., Tsu, R.: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Dev. 14, 61–65 (1970)

    Article  Google Scholar 

  5. Landau, L.D.: Quantum Mechanics. Pergamon Press, New York (1958)

    MATH  Google Scholar 

  6. Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  7. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1949)

    Google Scholar 

  8. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264(5158), 553–556 (1994)

    Article  Google Scholar 

  9. Feiginov, M., Sydlo, C., Cojocari, O., Meissner, P.: Resonant-tunnelling-diode oscillators operating at frequencies above 1.1 THz. Appl. Phys. Lett. 99, 233506 (2011)

    Article  Google Scholar 

  10. Manzoli, J.E., Romero, M.A., Hipolito, O.: On the capacitance-voltage modeling of strained quantum-well MODFETs. IEEE J. Quantum Electron. 34(12), 2314–2320 (1998)

    Article  Google Scholar 

  11. Mallow, M.J.: Simple graphical solution for the finite square well with no change of variables. Am. J. Phys. 64, 1072–1073 (1996)

    Article  Google Scholar 

  12. Cantrell, C.D.: Bound-state energies of a particle in a finite square well: an improved graphical solution. Am. J. Phys. 39, 107–110 (1971)

    Article  Google Scholar 

  13. Lima, F.M.S.: A simpler graphical solution and an approximate formula for energy eigenvalues in finite square quantum wells. Am. J. Phys. 88(11), 1019–1022 (2020)

    Article  Google Scholar 

  14. Ciftja, O., Johnston, B.: On a solution method for the bound energy states of a particle in a one-dimensional symmetric finite square well potential. Eur. J. Phys. 40(4), 045402 (2019)

    Article  Google Scholar 

  15. de Alcantara Bonfim, O.F., Griffiths, D.J.: Exact and approximate energy spectrum for the finite square well and related potentials. Am. J. Phys. 74(1), 43–48 (2006)

    Article  Google Scholar 

  16. Barker, B.I., Rayborn, G.H., Ioup, J.W., Ioup, G.E.: Approximating the finite square well with an infinite well: energies and eigenfunctions. Am. J. Phys. 59(11), 1038–1042 (1991)

    Article  MathSciNet  Google Scholar 

  17. Aronstein, D.L., Stroud, C.R., Jr.: General series solution for finite square-well energy levels for use in wave-packet studies. Am. J. Phys. 68(10), 943–949 (2000)

    Article  Google Scholar 

  18. Sprung, D.W.L., Wu, H., Matororell, J.: A new look at the square well potential. Eur. J. Phys. 13(1), 21–25 (1992)

    Article  Google Scholar 

  19. Andrade, F.M.: Exact Green’s function for rectangular potentials and its application to quasi-bound states. Phys. Lett. A 378(21), 1461–1468 (2014)

    Article  MathSciNet  Google Scholar 

  20. Blümel, R.: Analytical solution of the finite quantum square-well problem. J. Phys. A Math. Gen. 38(42), L673–L678 (2005)

    Article  MathSciNet  Google Scholar 

  21. Siewert, C.E.: Explicit results for the quantum mechanical energy states basic to a finite square-well potential. J. Math. Phys. 19(2), 434–435 (1978)

    Article  MathSciNet  Google Scholar 

  22. Paul, P., Nkemzi, D.: On the energy levels of a finite square-well potential. J. Math. Phys. 41(7), 4551–4555 (2000)

    Article  MathSciNet  Google Scholar 

  23. Singh, V.A., Kumar, L.: Revisiting elementary quantum mechanics with the BenDaniel-Duke boundary condition. Am. J. Phys. 74(5), 412–418 (2006)

    Article  Google Scholar 

  24. Schulman, J.N.: Extension of Tsu-Esaki model for effective mass effects in resonant tunneling. Appl. Phys. Lett. 72(22), 2829–2831 (1998)

    Article  Google Scholar 

  25. Capasso, F., Mohammed, K., Cho, A.: Resonant tunneling through double barriers, perpendicular quantum transport phenomena in super-lattices, and their device applications. IEEE J. Quantum Electron. 22(9), 1853–1869 (1986)

    Article  Google Scholar 

  26. Adachi, Sadao: GaAs, AlAs, and Al\(_{x}\)Ga\(_{1-x}\) As: material parameters for use in research and device applications. J. Appl. Phys. 58(3), R1–R29 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

Daniel Ricardo Celino was supported by a doctoral fellowship granted by the funding agency CAPES.

Funding

Funding was provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 303708/2017-4) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo A. Romero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

It is worth mentioning that, since \(\alpha \left[ i\right] \) is the result of a third degree equation, two additional values of \(\alpha \left[ i\right] \) would also be available to develop alternative expressions, if desired:

$$\begin{aligned} \begin{aligned} \alpha \left[ i\right]&=-\frac{H_{1}\left[ i\right] }{24}+\frac{3G_{1} \left[ i\right] }{2H_{1}\left[ i\right] }\\&\quad +\frac{pp\left[ i\right] }{6}+\frac{I\sqrt{3}}{4}\left( \frac{H_{1}\left[ i \right] }{6}+\frac{6G_{1}\left[ i\right] }{H_{1}\left[ i\right] }\right) , \\ \alpha \left[ i\right]&=-\frac{H_{1}\left[ i\right] }{24}+\frac{3G_{1} \left[ i\right] }{2H_{1}\left[ i\right] }\\&\quad +\frac{pp\left[ i\right] }{6}-\frac{I\sqrt{3}}{4}\left( \frac{H_{1}\left[ i \right] }{6}+\frac{6G_{1}\left[ i\right] }{H_{1}\left[ i\right] }\right) . \end{aligned} \end{aligned}$$

In our case, the choice of \(\alpha \left[ i\right] \) is dictated by the goal to have the simplest possible final expressions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celino, D.R., Romero, M.A. & Ragi, R. Accurate and fully analytical expressions for quantum energy levels in finite potential wells for nanoelectronic compact modeling. J Comput Electron 20, 2411–2419 (2021). https://doi.org/10.1007/s10825-021-01786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01786-5

Keywords

Navigation