Skip to main content

Tight-Binding Models, Their Applications to Device Modeling, and Deployment to a Global Community

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Part of the book series: Springer Handbooks ((SHB))

Abstract

Tight-binding has become the state-of-the-art for realistically sized nanoscale device modeling. It has been implemented by multiple advanced device modeling research groups in conjunction with multiple quantum transport methodologies. Industry has begun to adopt some of the advanced codes and is beginning to implement company internal versions. Commercial software vendors are adopting the methodologies and are beginning to deploy the approaches into their commercial TCAD products. Intense software development combining tight-binding with the non-equilibrium Green’s function (NEGF) approach and quantum transmitting boundary method (QTBM) for quantum transport began in 1994 at Texas Instruments. Acceptance of NEGF and tight-binding began with wider adoption in about 2004. The past 25 years have resulted in many model advancements, numerical technology development, and physics exploration that is by far too large to be covered here comprehensively. We start by setting forth the requirements for realistic modeling of extended nanoscale devices (Sects. 45.1 and 45.2), which include a full quantum mechanical treatment, atomistic interface treatments, atomistic representations of crystal symmetries, polarization, strain, and bond directions, and embedding into macroscopic fields such as electromagnetic potentials and long-range strain. We then proceed to describe the essential definitions and features for empirical tight-binding (Sect. 45.3). Sections 45.4, 45.5, and 45.6 address numerical issues of tight-binding in terms of transfer matrices, Green’s functions, and parallel scaling. Section 45.7 is dedicated to several applications around quantum dots and nanowires. We highlight million-atom quantum dot simulations and focus on carrier transport though silicon nanowires. We demonstrate how effective masses and bandgaps become design parameters at the nanoscale, how heavy masses are desirable for end-of-roadmap transistors, and how coherent transport assumptions break down. The nanowire simulations can be duplicated by everyone on nanoHUB.org. Section 45.8 highlights the widespread use of tight-binding within nanoHUB applications. Section 45.9 concludes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mendez, E.E., Agullo-Rueda, F.A., Hong, J.M.: Temperature dependence of the electronic coherence of GaAs-GaAlAs superlattices. Appl. Phys. Lett. 56, 2545–2547 (1990)

    Article  Google Scholar 

  2. Stranski, I.N., Krastanow, L.: Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander, Abhandlungen der Mathematisch-Naturwissenschaftlichen Klasse IIb. Akademie der Wissenschaften Wien. 146, 797–810 (1938)

    Google Scholar 

  3. Ahmed, S., Kharche, N., Rahman, R., Usman, M., Lee, S., Ryu, H., Bae, H., Clark, S., Haley, B., Naumov, M., Saied, F., Korkusinski, M., Kennel, R., McLennan, M., Boykin, T.B., Klimeck, G.: Multimillion atom simulations with NEMO 3-D. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 6, pp. 5745–5783. Springer, New York (2009)

    Chapter  Google Scholar 

  4. Lansbergen, G., Rahman, R., Wellard, C., Caro, J., Collaert, N., Biesemans, S., Woodall, J., Klimeck, G., Hollenberg, L., Rogge, S.: Gate induced quantum confinement transition of a single dopant atom in a Si FinFET. Nature Phys. 4, 656–661 (2008)

    Article  Google Scholar 

  5. Usman, M., Ryu, H., Woodall, J., Ebert, D., Klimeck, G.: Moving towards nano-TCAD through multi-million atom quantum dot simulations matching experimental data. IEEE Trans. Nanotech. 8, 330–344 (2009)

    Article  Google Scholar 

  6. Auth, C., et al.: A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: 2012 Symposium on VLSI Technology (VLIST) Tech. Digest, pp. 131–132. IEEE (2012)

    Chapter  Google Scholar 

  7. Jan, C.-H., et al.: A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications. In: 2012 International Electron Devices Meeting (IEDM) Tech. Digest, pp. 3.1.1–3.1.4. IEEE (2012)

    Google Scholar 

  8. Xie, R., et al.: A 7nm FinFET technology featuring EUV patterning and dual strained high mobility channels. In: 2016 International Electron Devices Meeting (IEDM) Tech. Digest, pp. 2.7.1–2.7.4. IEEE (2016)

    Chapter  Google Scholar 

  9. Bowen, R.C., Wang, Y: Enhanced PMOS Via Transverse Stress, US Patent 7,268,399 B2 (2007)

    Google Scholar 

  10. Thompson, S., et al.: A 90 nm logic technology featuring 50nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1 um2 SRAM cell. In: 2002 International Electron Devices Meeting (IEDM) Tech. Digest, pp. 61–64. IEEE (2002)

    Google Scholar 

  11. Stettler, M., et al.: State-of-the-art TCAD: 25 years ago and today. In: 2019 IEEE International Electron Devices Meeting (IEDM) Tech. Digest, pp. 39.1.1–39.1.4. IEEE (2019)

    Chapter  Google Scholar 

  12. See for example, Artacho, E., Beck, T., Hernandez, E.: Special issue: current trends in electronic structure: real-space, embedding and linear scaling techniques. Phys. Stat. Solidi (b) 243, 971–972 (2006) and other articles in this issue

    Google Scholar 

  13. Sanchez-Portal, D., Ordejon, P., Canadell, E.: Computing the properties of materials from first principles with SIESTA. In: Principles and Applications of Density Functional Method in Inorganic Chemistry II, Structure and Bonding, vol. 113, pp. 103–170. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  14. Skylaris, C.K., Haynes, P.D., Mostofi, A.A., Payne, M.C.: Using ONETEP for accurate and efficient O(N) density functional calculations. J. Phys. Condens. Matt. 17, 5757–5770 (2005)

    Article  Google Scholar 

  15. Singh, D.J., Nordstrom, L.: Planewaves, Pseudopotentials, and the LAPW Method. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  16. Wang, L.W., Kim, J.N., Zunger, A.: Electronic structures of [100]-faceted self-assembled pyramidal InAs/GaAs quantum dots. Phys. Rev. B. 59, 5678–5687 (1999)

    Article  Google Scholar 

  17. Pieecuch, P., Kowalski, K., Pimienta, I., McGuire, M.J.: Recent advances in electronic structure theory: method of moments of coupled-cluster equations and renormalized coupled-cluster approaches. Int. Rev. Phys. Chem. 21, 527–655 (2002)

    Article  Google Scholar 

  18. Williamson, A.J., Grossman, J.C., Hood, R.Q., Puzder, A., Galli, G.: Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Phys. Rev. Lett. 89, 196803 (2002)

    Article  Google Scholar 

  19. Aryasetiawan, F., Gunnarsson, O.: The GW method. Rep. Prog. Phys. 61, 237–312 (1998)

    Article  Google Scholar 

  20. Bowen, R.C., Klimeck, G., Lake, R.K., Frensley, W.R., Moise, T.: Quantitative simulation of a resonant tunneling diode. J. Appl. Phys. 81, 3207–3213 (1997)

    Article  Google Scholar 

  21. Boykin, T.B., Klimeck, G., Eriksson, M.A., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafuso, F., Lee, S.: Valley splitting in strained silicon quantum wells. Appl. Phys. Lett. 84, 115–117 (2004)

    Article  Google Scholar 

  22. Boykin, T.B., Klimeck, G., Friesen, M., Coppersmith, S.N., von Allmen, P., Oyafuso, F., Lee, S.: Valley splitting in low-density quantum-confined heterostructures studied using tight-binding models. Phys. Rev. B. 70, 165325 (2004)

    Article  Google Scholar 

  23. Boykin, T.B., Luisier, M., Schenk, A., Kharche, N., Klimeck, G.: The electronic structure and transmission characteristics of disordered AlGaAs nanowires. IEEE Trans. Nanotechnol. 6, 43–47 (2007)

    Article  Google Scholar 

  24. Kharche, N., Prada, M., Boykin, T.B., Klimek, G.: Valley splitting in strained silicon quantum wells modeled with 2 degrees miscuts, step disorder, and alloy disorder. Appl. Phys. Lett. 90, 092109 (2007)

    Article  Google Scholar 

  25. Klimeck, G., Ahmed, S., Kharche, N., Korkusinski, M., Usman, M., Prada, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: part II – applications. IEEE Trans. Elect. Dev. 54, 2090–2099 (2007)

    Article  Google Scholar 

  26. Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: Development of a nanoelectronic 3-D (NEMO 3-D) simulator for multimillion atom simulations and its application to alloyed quantum dots. J. Comp. Mod. Eng. Sci. 3, 601–642 (2002)

    MATH  Google Scholar 

  27. Korkusinski, M., Klimeck, G.: Atomistic simulations of long-range strain and spatial asymmetry molecular states of seven quantum dots. J. Phys. Conf. Ser. 38, 75–78 (2006)

    Article  Google Scholar 

  28. Lee, S., Lazarenkova, O.L., von Allmen, P., Oyafuso, F., Klimeck, G.: Effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots. Phys. Rev. B. 70, 125307 (2004)

    Article  Google Scholar 

  29. Lee, S.W., von Allmen, P., Oyafuso, F., Klimeck, G., Whaley, K.B.: Effect of electron-nuclear spin interactions for electron-spin qubits localized in InGaAs self-assembled quantum dots. J. Appl. Phys. 97, 043706 (2005)

    Article  Google Scholar 

  30. Liang, G.C., Xiang, J., Kharche, N., Klimeck, G., Lieber, C.M., Lundstrom, M.: Performance analysis of a Ge/Si core/shell nanowire field-effect transistor. Nano Lett. 7, 642–646 (2007)

    Article  Google Scholar 

  31. Oyafuso, F., Klimeck, G., Bowen, R.C., Boykin, T.B.: Atomistic electronic structure calculations of unstrained alloyed systems consisting of a million atoms. J. Comp. Electr. 1, 317–321 (2002)

    Article  Google Scholar 

  32. Oyafuso, F., Klimeck, G., Bowen, R.C., Boykin, T.B., von Allmen, P.: Disorder induced broadening in multimillion atom alloyed quantum dot systems. Phys. Stat. Sol. (c). 0004, 1149–1152 (2003)

    Article  Google Scholar 

  33. Rahman, R., Wellard, C.J., Bradbury, F.R., Prada, M., Cole, J.H., Klimeck, G., Hollenberg, L.C.L.: High precision quantum control of single donor spins in Si. Phys. Rev. Lett. 99, 036403 (2007)

    Article  Google Scholar 

  34. Lee, S., Kim, J., Jonsson, L., Wilkins, J.W., Bryant, G.W., Klimeck, G.: Many-body levels of optically excited and multiply charged InAs nanocrystals modeled by semiempirical tight-binding. Phys. Rev. B. 66, 235307 (2002)

    Article  Google Scholar 

  35. Klimeck, G., Ahmed, S., Bae, H., Kharche, N., Clark, S., Haley, B., Lee, S., Naumov, M., Ryu, H., Saied, F., Prada, M., Korkusinski, M., Boykin, T.B.: Atomistic simulation of realistically sized nanodevices using NEMO 3-D: part I – models and benchmarks. IEEE Trans. Elect. Dev. 54, 2079–2089 (2007)

    Article  Google Scholar 

  36. Slater, J.C., Koster, G.F.: Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954)

    Article  MATH  Google Scholar 

  37. Cerda, J., Soria, F.: Accurate and transferable extended Hückel-type tight-binding parameters. Phys. Rev. B. 61, 7965–7971 (2000)

    Article  Google Scholar 

  38. Löwdin, P.O.: On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys. 18, 365–375 (1950)

    Article  Google Scholar 

  39. Vogl, P., Hjalmarson, H.P., Dow, J.D.: A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids. 44, 365–378 (1983)

    Article  Google Scholar 

  40. Boykin, T.B.: Improved fits of effective masses at Γ in the spin-orbit, second-near-neighbor sp3s* model: results from analytic expressions. Phys. Rev. B. 56, 9613–9618 (1997)

    Article  Google Scholar 

  41. Jancu, J.-M., Scholz, R., Beltram, F., Bassani, F.: Empirical spds* tight-binding calculation for cubic semiconductors: general method and material parameters. Phys. Rev. B. 57, 6493–6507 (1998)

    Article  Google Scholar 

  42. Boykin, T.B., Klimeck, G., Oyafuso, F.: Valence band effective mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parameterization. Phys. Rev. B. 69, 115201 (2004)

    Article  Google Scholar 

  43. Harrison, W.A.: Elementary Electronic Structure. World Scientific, New Jersey (1999)

    Book  Google Scholar 

  44. Boykin, T.B., Klimeck, G., Bowen, R.C., Lake, R.: Effective mass reproducibility of the nearest-neighbor sp3s* models: analytic results. Phys. Rev. B. 56, 4102–4107 (1997)

    Article  Google Scholar 

  45. Graf, M., Vogl, P.: Electromagnetic fields and dielectric response in empirical tight-binding theory. Phys. Rev. B. 51, 4940–4949 (1995)

    Article  Google Scholar 

  46. Boykin, T.B.: Incorporation of incompleteness in the k.p perturbation theory. Phys. Rev. B. 52, 16317–16320 (1995)

    Article  Google Scholar 

  47. Klimeck, G., Bowen, R.C., Boykin, T.B., Salazar-Lazaro, C., Cwik, T., Stoica, A.: Si tight-binding parameters from genetic algorithm fitting. Superlatt. Microstruct. 27, 77–88 (2000)

    Article  Google Scholar 

  48. Tan, Y., Povolotskyi, M., Kubis, T., He, Y., Jiang, Z., Klimeck, G., Boykin, T.B.: Empirical tight-binding parameters for GaAs and MgO with explicit basis through DFT mapping. J. Comp. Electr. 12, 56–60 (2013)

    Article  Google Scholar 

  49. Tan, Y., Povolotskyi, M., Kubis, T., Boykin, T.B., Klimeck, G.: Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution. Phys. Rev. B. 92, 085301 (2015)

    Article  Google Scholar 

  50. Tan, Y., Povolotskyi, M., Kubis, T., Boykin, T.B., Klimeck, G.: Transferable tight-binding model for strained group IV and III–V materials and heterostructures. Phys. Rev. B. 94, 045311 (2016)

    Article  Google Scholar 

  51. Niquet, Y.-M., Rideau, D., Tavernier, C., Jaouen, H., Blase, X.: Onsite matrix elements of the tight-binding Hamiltonian of a strained crystal: application to silicon, germanium, and their alloys. Phys. Rev. B. 79, 245201 (2009)

    Article  Google Scholar 

  52. Boykin, T.B., Klimeck, G., Bowen, R.C., Oyafuso, F.: Diagonal parameter shifts due to nearest-neighbor displacements in empirical tight-binding theory. Phys. Rev. B. 66, 125207 (2002)

    Article  Google Scholar 

  53. Boykin, T.B., Luisier, M., Salmani-Jelodar, M., Klimeck, G.: Strain-induced, off-diagonal, same-atom parameters in empirical tight-binding theory suitable for [110] uniaxial strain applied to a silicon parameterization. Phys. Rev. B. 81, 125202 (2010)

    Article  Google Scholar 

  54. Shishidou, T., Oguchi, T.: k·p formula for use with linearized augmented plane waves. Phys. Rev. B. 78, 245107 (2018)

    Article  Google Scholar 

  55. Chadi, D.J.: Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys. Rev. B. 16, 790–796 (1977)

    Article  Google Scholar 

  56. Boykin, T.B., Vogl, P.: Dielectric response of molecules in empirical tight-binding theory. Phys. Rev. B. 65, 035202 (2001)

    Article  Google Scholar 

  57. Boykin, T.B., Bowen, R.C., Klimeck, G.: Electromagnetic coupling and gauge invariance in the empirical tight-binding method. Phys. Rev. B. 63, 245314 (2001)

    Article  Google Scholar 

  58. Foreman, B.A.: Consequences of local gauge symmetry in empirical tight-binding theory. Phys Rev B. 66, 165212 (2002)

    Article  Google Scholar 

  59. Peierls, R.: Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–791 (1933)

    Article  MATH  Google Scholar 

  60. Boykin, T.B.: Tight-binding-like expressions for the continuous-space electromagnetic coupling Hamiltonian Am. J. Phys. 69, 793–798 (2001)

    Google Scholar 

  61. Chang, Y.-C.: Complex band structures of zinc-blende materials. Phys. Rev. B. 25, 605–619 (1982)

    Article  Google Scholar 

  62. Chang, Y.-C., Schulman, J.N.: Complex band structures of crystalline solids: an eigenvalue method. Phys. Rev. B. 25, 3975–3986 (1982)

    Article  Google Scholar 

  63. Schulman, J.N., Chang, Y.-C.: Band mixing in semiconductor superlattices. Phys. Rev. B. 31, 2056–2068 (1985)

    Article  Google Scholar 

  64. Bowen, R.C., Frensley, W.R., Klimeck, G., Lake, R.K.: Transmission resonances and zeros in multiband models. Phys. Rev. B. 52, 2754–2765 (1995)

    Article  Google Scholar 

  65. Boykin, T.B.: Generalized eigenproblem method for surface and interface states: the complex bands of GaAs and AlAs. Phys. Rev. B. 54, 8107–8115 (1996)

    Article  Google Scholar 

  66. Boykin, T.B.: Tunneling calculations for systems with singular coupling matrices: results for a simple model. Phys. Rev. B. 54, 7670–7673 (1996)

    Article  Google Scholar 

  67. Luisier, M., Schenk, A., Fichtner, W., Klimeck, G.: Atomistic simulation of nanowires in the sp3d5s∗ tight-binding formalism: from boundary conditions to strain calculations. Phys. Rev. B. 74, 205323 (2006)

    Article  Google Scholar 

  68. Tsu, R., Esaki, L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973)

    Article  Google Scholar 

  69. Boykin, T.B., van der Wagt, J.P.A., Harris Jr., J.S.: Tight-binding model for GaAs/AlAs resonant tunneling diodes. Phys. Rev. B. 43, 4777–4784 (1991)

    Article  Google Scholar 

  70. Schulman, J.N., Chang, Y.-C.: Reduced Hamiltonian method for solving the tight-binding model of interfaces. Phys. Rev. B. 27, 2346–2354 (1983)

    Article  Google Scholar 

  71. Ting, D.Z.Y., Yu, E.T., McGill, T.C.: Multiband treatment of quantum transport in interband tunnel devices. Phys. Rev. B. 45, 3583–3592 (1992)

    Article  Google Scholar 

  72. Grosso, G., Moroni, S., Parravicini, G.P.: Electronic structure of the InAs-GaSb superlattice studied by the renormalization method. Phys. Rev. B. 40, 12328–12337 (1989)

    Article  Google Scholar 

  73. Boykin, T.B., Harris Jr., J.S.: X-valley tunneling in single AlAs barriers. J. Appl. Phys. 72, 988–992 (1992)

    Article  Google Scholar 

  74. Boykin, T.B., Luisier, M., Klimeck, G.: Multi-band transmission calculations for nanowires using an optimized renormalization method. Phys. Rev. B. 77, 165318 (2008)

    Article  Google Scholar 

  75. Luisier, M., Klimeck, G., Schenk, A., Fichtner, W., Boykin, T.B.: A parallel sparse linear solver for nearest-neighbor tight-binding problems. In: Lunque, E., Maragalef, T., Benitez, T. (eds.) Europar 2008. Lecture Notes in Computer Science 5168, pp. 790–800. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  76. Koskinen, P., Makinen, V.: Density-functional tight-binding for beginners. Comput. Mater. Sci. 47, 237–253 (2009)

    Article  Google Scholar 

  77. Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Sanchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matt. 14, 2745–2779 (2002)

    Article  Google Scholar 

  78. Pecchia, A., Di Carlo, A.: Atomistic theory of transport in organic and inorganic nanostructures. Rep. Prog. Phys. 67, 1497–1561 (2004)

    Article  Google Scholar 

  79. Soriano, M., Palacios, J.J.: Theory of projections with nonorthogonal basis sets: partitioning techniques and effective Hamiltonians. Phys. Rev. B. 90, 075128 (2014)

    Article  Google Scholar 

  80. Boykin, T.B., Sarangapani, P., Klimeck, G.: Non-orthogonal tight-binding models: problems and possible remedies for realistic nano-scale devices. J. Appl. Phys. 125, 144302 (2019)

    Article  Google Scholar 

  81. Kadanoff, L.P., Baym, G.: Quantum Statistical Mechanics, Frontiers in Physics Lecture Note Series. W.A. Benjamin, New York (1962)

    MATH  Google Scholar 

  82. Keldysh, L.V.: Diagram technique for non-equilibrium processes. Sov. Phys. JETP. 20, 1018 (1965)

    Google Scholar 

  83. Bertoncini, R., Kirman, A.M., Ferry, D.K.: Airy-coordinate Green’s-function technique for high-field transport in semiconductors. Phys. Rev. B. 40, 3371–3374 (1989).; Airy-coordinate technique for nonequilibrium Green’s-function approach to high-field quantum transport. Phys. Rev. B 41, 1390–1400 (1990)

    Article  Google Scholar 

  84. Datta, S.: A simple kinetic equation for steady-state quantum transport. J. Phys. Condens. Matt. 2, 8023–8052 (1990)

    Article  Google Scholar 

  85. Datta, S.: Nanoscale device simulation: the Green’s function method. Superlatt. Microstruct. 28, 253–278 (2000)

    Article  Google Scholar 

  86. Datta, S.: Non-equilibrium Green’s function (NEGF) formalism: an elementary introduction. In: 2002 International Electron Devices Meeting (IEDM) Tech. Digest, pp. 703–706. IEEE (2002)

    Google Scholar 

  87. Datta, S.: Electrical resistance: an atomic view. Nanotechnology. 15, S433–S451 (2004)

    Article  Google Scholar 

  88. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, New York (1997)

    Google Scholar 

  89. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  90. Datta, S.: A New Perspective on Transport. World Scientific, New Jersey (2012)

    MATH  Google Scholar 

  91. Datta, S.: Lessons from Nanoelectronics: A New Perspective on Transport – Part A: Basic Concepts. World Scientific, New Jersey (2017)

    Book  Google Scholar 

  92. Datta, S.: Lessons From Nanoelectronics: A New Perspective on Transport – Part B: Quantum Transport. World Scientific, New Jersey (2017)

    Google Scholar 

  93. Datta, S.: nanoHUB-U: Fundamentals of Nanoelectronics – Part A: Basic Concepts, 2nd edn. https:/978-3-030-79827-7/nanohub.org/courses/FON1

  94. Datta, S.: nanoHUB-U: Fundamentals of Nanoelectronics – Part B: Quantum Transport, 2nd edn. https://nanohub.org/courses/FON2

  95. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845–7869 (1997)

    Article  Google Scholar 

  96. Lent, C.S., Kirkner, D.J.: The quantum transmitting boundary method. J. Appl. Phys. 67, 6353–6359 (1990)

    Article  Google Scholar 

  97. Bowen, R.C.: Full Bandstructure Modeling of Quantum Transport in Nano-Scaled Devices. Ph.D. Thesis, University of Texas at Dallas (1996)

    Google Scholar 

  98. Haydock, R., Heine, V., Kelly, M.J.: Electronic structure based on the local atomic environment for tight-binding bands. J. Phys. C Solid State Phys. 5, 2845–2858 (1972).; Electronic structure based on the local atomic environment for tight-binding bands II. J. Phys. C Solid State Phys. 8 2591–2605 (1975)

    Article  Google Scholar 

  99. Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to MO(100). J. Phys. F. 14, 1205–1215 (1984)

    Article  Google Scholar 

  100. Klimeck, G., Lake, R., Fernando, C., Bowen, R., Blanks, D., Leng, M., Moise, T., Kao, Y., Frensley, W.: Numerical approximations for polar optical phonon scattering in resonant tunneling diodes. In: Ismail, K., Bandyopadhyay, S., Leburton, J.P. (eds.) Quantum Devices and Circuits. Imperial Press, London (1996)

    Google Scholar 

  101. Luisier, M., Klimeck, G.: Atomistic full-band simulations of Si nanowire transistors: effects of electron-phonon scattering. Phys. Rev. B80, 155430 (2009)

    Article  Google Scholar 

  102. Park, S., Park, H.-H., Salmani-Jelodar, M., Steiger, S., Povolotskyi, M., Kubis, T., Klimeck, G.: Contact modeling and analysis of InAs HEMT transistors. In: Proceedings of the IEEE Nanotechnology Materials and Devices Conference (IEEE NMDC 2011), pp. 376–379. IEEE, Piscataway (2011)

    Chapter  Google Scholar 

  103. Sarangapani, P., Chu, Y., Charles, J., Klimeck, G., Kubis, T.: Band-tail formation and band-gap narrowing driven by polar optical phonons and charged impurities in atomically resolved III-V semiconductors and nanodevices. Phys. Rev. Appl. 12, 044045 (2019)

    Article  Google Scholar 

  104. Luisier, M., Boykin, T.B., Klimeck, G., Fichtner, W.: Atomistic nanoelectronic device simulations with sustained performances up to 1.44 PFlop/s. In: SC ‘11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, Seattle, WA, Nov. 2011. IEEE, Pistcataway (2011)

    Google Scholar 

  105. Klimeck, G., Lake, R., Bowen, R.C., Frensley, W., Moise, T.: Quantum device simulation with a generalized tunneling formula. Appl. Phys. Lett. 67, 2539–2541 (1995)

    Article  Google Scholar 

  106. Long, P., Huang, J., Jiang, Z., Klimeck, G., Rodwell, M., Povolotskyi, M.: Performance degradation of superlattice MOSFETs due to scattering in the contacts. J. Appl. Phys. 120, 224501 (2016)

    Article  Google Scholar 

  107. Kubis, T., He, Y., Andrawis, R.: Gerhard Klimeck: general retarded contact self-energies in and beyond the non-equilibrium Green’s function method. J. Phys. Conf. Ser. 696, 012019 (2016)

    Article  Google Scholar 

  108. He, Y., Wang, Y., Klimeck, G., Kubis, T.: Non-equilibrium Green’s functions method: non-trivial and disordered leads. Appl. Phys. Lett. 105, 213502 (2014)

    Article  Google Scholar 

  109. Ameen, T., Ilatikhameneh, H., Huang, J., Povolotskyi, M., Rahman, R., Klimeck, G.: Combination of equilibrium and nonequilibrium carrier statistics into an atomistic quantum transport model for tunneling heterojunctions. IEEE Trans. Elect. Dev. 64, 2512–2518 (2017)

    Article  Google Scholar 

  110. Long, P., Huang, J., Povolotskyi, M., Sarangapani, P., Valencia-Zapata, G., Kubis, T., Rodwell, M., Klimeck, G.: Atomistic modeling trap-assisted tunneling in hole tunnel FETs. J. Appl. Phys. 123, 174504 (2018)

    Article  Google Scholar 

  111. Klimeck, G.: Quantum and semi-classical transport in RTDs in NEMO 1-D. J. Comp. Elect. 2, 177–182 (2003)

    Article  Google Scholar 

  112. Huang, J., Povolotskyi, M., Ilatikhameneh, H., Ameen, T., Rahman, R., Rodwell, M., Long, P., Klimeck, G.: A multiscale modeling of triple-heterojunction Tunneling FETs. IEEE Trans. Elect. Dev. 64, 2728–2735 (2017)

    Article  Google Scholar 

  113. Steiger, S., Povolotskyi, M., Park, H.-H., Kubis, T., Klimeck, G.: NEMO5: a parallel multiscale nanoelectronics modeling tool. IEEE Trans. Nanotech. 10, 1464–1474 (2011)

    Article  Google Scholar 

  114. Fonseca, J., Kubis, T., Povolotskyi, M., Novakovic, B., Ajoy, A., Hegde, G., Ilatikhameneh, H., Jiang, Z., Sengupta, P., Tan, Y., Klimeck, G.: Efficient and realistic device modeling from atomic detail to the nanoscale. J. Comp. Electr. 12, 592–600 (2013)

    Article  Google Scholar 

  115. Kuroda, M., Jiang, Z., Povolotskyi, M., Klimeck, G., Newns, D., Martyna, G.: Anisotropic strain in SmSe and SmTe: implications for electronic transport. Phys. Rev. B. 90, 245124 (2014)

    Article  Google Scholar 

  116. Oyafuso, F., Klimeck, G., von Allmen, P., Boykin, T.B., Bowen, R.C.: Strain effects in large-scale atomistic quantum dot simulations. Phys. Stat. Sol. (b). 239, 71–79 (2003)

    Article  Google Scholar 

  117. Mukherjee, S., Miao, K., Paul, A., Neophytou, N., Kim, R., Geng, J., Povolotskyi, M., Kubis, T.C., Ajoy, A., Novakovic, B., Fonseca, J., Ilatikhameneh, H., Steiger, S., McLennan, M., Lundstrom, M., Klimeck, G.: Band Structure Lab. https://nanohub.org/resources/bandstrlab. https://doi.org/10.4231/D3Z02Z95M (2015)

  118. Li, S., Ahmed, S., Klimeck, G., Darve, E.: Computing entries of the inverse of a sparse matrix using the FIND algorithm. J. Comp. Phys. 227, 9408–9427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  119. Cauley, S., Luisier, M., Balakrishnan, V., Klimeck, G., Koh, C.-K.: Distributed non-equilibrium Green’s function algorithms for the simulation of nanoelectronic devices with scattering. J. Appl. Phys. 110, 043713 (2011)

    Article  Google Scholar 

  120. Cauley, S., Balakrishnan, V., Klimeck, G., Koh, C.-K.: A two-dimensional domain decomposition technique for the simulation of quantum-scale devices. J. Comp. Phys. 231, 1293–1313 (2012)

    Article  MATH  Google Scholar 

  121. Hetmaniuk, U., Zhao, Y., Anantram, M.P.: A nested dissection approach to modeling transport in nanodevices: algorithms and applications. Int. J. Num. Meth Eng. 95, 587–607 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  122. Zhao, Y., Hetmaniuk, U., Patil, S.R., Qi, J., Anantram, M.P.: Nested dissection solver for transport in 3D nano-electronic devices. J. Comp. Electr. 15, 708–720 (2016)

    Article  Google Scholar 

  123. Ahn, Y., Shin, M.: Efficient atomistic simulation of heterostructure field-effect transistors. IEEE J. Electr. Dev. Soc. 7, 668–676 (2019)

    Article  Google Scholar 

  124. Polizzi, E., Abdallah, N.B.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comp. Phys. 202, 150–180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  125. Wang, J., Polizzi, E., Lundstrom, M.: A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation. J. Appl. Phys. 96, 2192–2203 (2004)

    Article  Google Scholar 

  126. Jin, S., Park, Y.J., Min, H.S.: A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions. J. Appl. Phys. 99, 123719 (2006)

    Article  Google Scholar 

  127. Park, H.-H., Zeng, L., Buresh, M., Wang, S., Klimeck, G., Mehrotra, S.R., Heitzinger, C., Haley, B.P.: Nanowire. https://nanohub.org/resources/nanowire (2014)

  128. Shin, M.: Full-quantum simulation of hole transport and band-to-band tunneling in nanowires using the k·p method. J. Appl. Phys. 106, 054505 (2009)

    Article  Google Scholar 

  129. Huang, J.Z., Chew, W.C., Peng, J., Yam, C.-Y., Jiang, L.J., Chen, G.-H.: Model order reduction for multiband quantum transport simulations and its application to p-type junctionless transistors. IEEE Trans. Elect. Dev. 60, 2111–2119 (2013)

    Article  Google Scholar 

  130. Huang, J.Z., Zhang, L., Chew, W.C., Yam, C.-Y., Jiang, L.J., Chen, G.-H., Chan, M.: Model order reduction for quantum transport simulation of band-to-band tunneling devices. IEEE Trans. Elect. Dev. 61, 561–568 (2014)

    Article  Google Scholar 

  131. Huang, J., Zhang, L., Long, P., Povolotskyi, M., Klimeck, G.: Quantum transport simulation of III–V TFETs with reduced-order k·p method, Chapter 6. In: Zhang, L., Chan, M. (eds.) Tunneling Field Effect Transistor Technology, pp. 151–180. Springer International, Cham (2016)

    Google Scholar 

  132. Guo, J., Datta, S., Lundstrom, M., Anantram, M.: Toward multiscale modeling of carbon nanotube transistors. Int. J. Multiscale Comp. Eng. 2, 257–277 (2004)

    Article  Google Scholar 

  133. Fiori, G., Iannaccone, G., Klimeck, G.: Coupled mode space approach for the simulation of realistic carbon nanotube field-effect transistors. IEEE Trans. Nanotech. 6, 475–480 (2007)

    Article  Google Scholar 

  134. Grassi, R., Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G.: Mode space approach for tight-binding transport simulation in graphene nanoribbon FETs. IEEE Trans. Nanotech. 10, 371–378 (2011)

    Article  Google Scholar 

  135. Luisier, M.: Quantum Transport beyond the Effective Mass Approximation. Doctoral Thesis ETH, Zurich (2007)

    Google Scholar 

  136. Hetmaniuk, U., Ji, D., Zhao, Y., Anantram, M.P.: A reduced-order method for coherent transport using Green’s functions. IEEE Trans. Electr. Dev. 62, 736–742 (2015)

    Article  Google Scholar 

  137. Mil’nikov, G., Mori, N., Kamakura, Y.: Equivalent transport models in atomistic quantum wires. Phys. Rev. B. 85, 035317 (2012)

    Article  Google Scholar 

  138. Afzalian, A., Huang, J., Ilatikhameneh, H., Charles, J., Lemus, D., Bermeo, J., Rubiano, S., Kubis, T., Povolotskyi, M., Klimeck, G., Passlack, M., Yeo, Y.-C.: Mode space tight-binding model for ultra-fast simulations of III–V nanowire MOSFETs and heterojunction TFETs. In: Proceedings of the International Workshop on Computational Electronics (IWCE 2015) West Lafayette, Indiana USA, 2015, pp. 1–3. IEEE, Piscataway (2015)

    Google Scholar 

  139. Shin, M., Jeong, W.J., Lee, J.: Density functional theory based simulations of silicon nanowire field effect transistors. J. Appl. Phys. 119, 154505 (2016)

    Article  Google Scholar 

  140. Jeong, W.J., Seo, J., Shin, M.: In simulation of semiconductor processes and devices (SISPAD). In: 2016 International Conference on, p. 81. IEEE (2016)

    Google Scholar 

  141. Huang, J., Ilatikhameneh, H., Povolotskyi, M., Klimeck, G.: Robust mode space approach for atomistic modeling of realistically large nanowire transistors. J. Appl. Phys. 123, 044303 (2018)

    Article  Google Scholar 

  142. Lee, S., Oyafuso, F., von Allmen, P., Klimeck, G.: Boundary conditions for the electronic structure of finite-extent, embedded semiconductor nanostructures. Phys. Rev. B. 69, 045316 (2004)

    Article  Google Scholar 

  143. He, Y., Tan, Y., Jiang, Z., Povolotskyi, M.L., Klimeck, G., Kubis, T.: Surface passivation in empirical tight-binding. IEEE Trans. Elect. Dev. 63, 954–958 (2016)

    Article  Google Scholar 

  144. Chen, F., Jauregui, L., Tan, Y., Manfra, M., Chen, Y., Klimeck, G., Kubis, T.: In-surface confinement of topological insulator nanowire surface states. Appl. Phys. Lett. 107, 121605 (2015)

    Article  Google Scholar 

  145. Klimeck, G., Oyafuso, F., Bowen, R.C., Boykin, T.B., Cwik, T., Huang, E., Vinyard, E.: 3-D atomistic nanoelectronic modeling on high performance clusters: multimillion atom simulations. Superlattice. Microstr. 31, 171–179 (2002)

    Article  Google Scholar 

  146. Klimeck, G., Woo, I., Usman, M., Ebert, D.S.: Self-Assembled Quantum Dot Wave Structure. https://nanohub.org/resources/10689 (2011)

  147. https://engineering.purdue.edu/gekcogrp/research-group/DanielMejia/

  148. Boykin, T.B., Klimeck, G.: Practical application of zone-folding concepts in tight-binding calculations. Phys. Rev. B. 71, 115215 (2005)

    Article  Google Scholar 

  149. Boykin, T.B., Kharche, N., Klimeck, G., Korkusinski, M.: Approximate bandstructures of semiconductor alloys from tight-binding supercell calculations. J. Phys. Condens. Matter. 19, 036203 (2007)

    Article  Google Scholar 

  150. Boykin, T.B., Kharche, N., Klimeck, G.: Brillouin-zone unfolding of perfect supercells having nonequivalent primitive cells illustrated with a Si/Ge tight-binding parameterization. Phys. Rev. B. 76, 035310 (2007)

    Article  Google Scholar 

  151. Kharche, N., Luisier, M., Boykin, T.B., Klimeck, G.: Electronic structure and transmission characteristics of SiGe nanowires. J. Comp. Elect. 7, 350–354 (2008)

    Article  Google Scholar 

  152. Rahman, A., Guo, J., Datta, S., Lundstrom, M.S.: Theory of ballistic nanotransistors. IEEE Trans. Elect. Dev. 50, 1853–1864 (2003)

    Article  Google Scholar 

  153. Neophytou, N., Paul, A., Lundstrom, M., Klimeck, G.: Simulation of nanowire transistors: atomistic vs. effective mass models. J. Comp. Electron. 7, 363–366 (2008)

    Article  Google Scholar 

  154. Liu, Y., Neophytou, N., Low, T., Klimeck, G., Lundstrom, M.: A tight-binding study of the ballistic injection velocity for ultrathin-body SOI MOSFETs. IEEE Trans. Elect. Dev. 55, 866–871 (2008)

    Article  Google Scholar 

  155. Liu, Y., Neophytou, N., Klimeck, G., Lundstrom, M.: Band-structure effects on the performance of III–V ultrathin-body SOI MOSFETs. IEEE Trans. Elect. Dev. 55, 1116–1122 (2008)

    Article  Google Scholar 

  156. Neophytou, N., Paul, A., Lundstrom, M., Klimeck, G.: Bandstructure effects in silicon nanowire electron transport. IEEE Trans. Elect. Dev. 55, 1286–1297 (2008)

    Article  Google Scholar 

  157. Neophytou, N., Paul, A., Klimeck, G.: Bandstructure effects in silicon nanowire hole transport. IEEE Trans. Nanotech. 7, 710–719 (2008)

    Article  Google Scholar 

  158. Klimeck, G., Neophytou, N.: Design space for low sensitivity to size variations in [110] PMOS nanowire devices: the implications of anisotropy in the quantization mass. Nano Lett. 9, 623–630 (2009)

    Article  Google Scholar 

  159. Szabó, Á., Luisier, M.: Under-the-barrier model: an extension of the top-of-the-barrier model to efficiently and accurately simulate ultrascaled nanowire transistors. IEEE Trans. Elect. Dev. 60, 2353–2360 (2013)

    Article  Google Scholar 

  160. Rahman, A., Guo, J., Hasan, M.S., Liu, Y., Matsudaira, A., Ahmed, S.S., Datta, S., Lundstrom, M.: FETToy. https://nanohub.org/resources/fettoy. https://doi.org/10.4231/D38S4JQ3J (2015)

  161. Kim, S. G., Luisier, M., Haley, B. P., Paul, A., Mehrotra, S. R., Klimeck, G., Ilatikhameneh, H.: OMEN Nanowire. https://nanohub.org/resources/omenwire (2017)

  162. Potz, W.: Self-consistent model of transport in quantum well tunneling structures. J. Appl. Phys. 66, 2458–2466 (1989)

    Article  Google Scholar 

  163. Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745–791 (1990)

    Article  Google Scholar 

  164. Laux, S.E., Kumar, A., Fischetti, M.V.: Analysis of quantum ballistic electron transport in ultrasmall silicon devices including space-charge and geometric effects. J. Appl. Phys. 95, 5545 (2004)

    Article  Google Scholar 

  165. Kubis, T.C.: Quantum Transport in Semiconductor Nanostructures. PhD Thesis, Technische Universität München (2009), pp. 96–99, also available at: https://nanohub.org/resources/8613/download/Diss_tkubis_final_print.pdf

  166. Kubis, T., Vogl, P.: Assessment of approximations in nonequilibrium Green’s function theory. Phys. Rev. B. 83, 195304 (2011)

    Article  Google Scholar 

  167. Charles, J., Sarangapani, P., Golizadeh-Mojarad, R., Andrawis, R., Lemus, D., Guo, X., Mejia, D., Fonseca, J., Povolotskyi, M., Kubis, T., Klimeck, G.: Incoherent transport in NEMO5: realistic and efficient scattering on phonons. J. Comp. Elect. 15, 1123–1129 (2016)

    Article  Google Scholar 

  168. Neophytou, N., Kim, S.G., Klimeck, G., Kosina, H.: On the bandstructure velocity and ballistic current of ultra-narrow silicon nanowire transistors as a function of cross section size, orientation, and bias. J. Appl. Phys. 107, 113701 (2010)

    Article  Google Scholar 

  169. Mehrotra, S., Kim, S.G., Kubis, T., Povolotskyi, M., Lundstrom, M., Klimeck, G.: Engineering nanowire n-MOSFETs at Lg < 8nm. IEEE Trans. Elect. Dev. 60, 2171–2177 (2013)

    Article  Google Scholar 

  170. Salmani-Jelodar, M., Mehrotra, S., Ilatikhameneh, H., Klimeck, G.: Design guidelines for Sub-12 nm nanowire MOSFETs. IEEE Trans. Nanotech. 14, 210–213 (2015)

    Article  Google Scholar 

  171. Park, S., Liu, Y., Kharche, N., Salmani-Jelodar, M., Klimeck, G., Lundstrom, M., Luisier, M.: Performance comparisons of III–V and strained-Si in planar FETs and non-planar FinFETs at ultra-short gate length (12nm). IEEE Trans. Elect. Dev. 59, 2107–2114 (2012)

    Article  Google Scholar 

  172. Sylvia, S., Park, H.-H., Khayer, M., Alam, K., Klimeck, G., Lake, R.: Material selection for minimizing direct tunneling in nanowire transistors. IEEE Trans. Elect. Dev. 59, 2064–2069 (2012)

    Article  Google Scholar 

  173. Neophytou, N., Paul, A., Klimeck, G.: Band structure effects in silicon nanowire hole transport. IEEE Trans. Nanotech. 7, 710–719 (2008)

    Article  Google Scholar 

  174. Paul, A., Mehrotra, S., Luisier, M., Klimeck, G.: Performance prediction of ultra-scaled SiGe/Si Core/Shell electron and hole nanowire MOSFETs. IEEE Elect. Dev. Lett. 31, 278–280 (2010)

    Article  Google Scholar 

  175. Publications of International Technology Roadmap for Semiconductors (ITRS), ed. http://www.itrs.net (2013)

  176. Skotnicki, T., et al.: MASTAR 4.0 user manual (2011)

    Google Scholar 

  177. Salmani-Jelodar, M., Kim, S., Ng, K., Klimeck, G.: Transistor roadmap projection using predictive full-band atomistic modeling. Appl. Phys. Lett. 105, 083508 (2014)

    Article  Google Scholar 

  178. Madhavan, K., Zentner, M., Klimeck, G.: Learning and research in the cloud. Nature Nanotech. 8, 786–789 (2013)

    Article  Google Scholar 

  179. https://nanohub.org/citations

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Klimeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klimeck, G., Boykin, T. (2023). Tight-Binding Models, Their Applications to Device Modeling, and Deployment to a Global Community. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics