Skip to main content
Log in

Optimization and realization all-optical compact five-channel demultiplexer using 2D photonic crystal based hexagonal cavities

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a compact all-optical five-channel demultiplexer (DEMUX) using 2D photonic crystal hexagonal cavities is proposed. The proposed DEMUX comprises bus/drop waveguides, photonic crystal waveguides containing four consecutive 120° bends, two power splitters, and hexagonal resonant cavities. By adjusting the radius and refractive index of the inner/coupling rods, position, and radius of the scattering rods, the operating wavelength and the output power of each port are managed. Normalized transmission spectra and calculations of band structure are calculated by the finite-difference time-domain (FDTD) and plane-wave expansion (PWE) methods, respectively. The resonant wavelengths of the proposed structure are 1328.7 nm, 1331.9 nm, 1335.4 nm, 1340.5 nm, and 1344.4 nm, respectively. Calculation results show that the average quality factor, optical transmission efficiency, passbands of channels, minimum and maximum crosstalk of nearly 6236, 95.98%, 0.22 nm, − 18.04 dB, and − 50.2 dB, respectively. The operating wavelength range of DEMUX is 1328 nm to 1345 nm and the average channel spacing between the channels nearly about 3.93 nm. The footprint of the device is 240 μm2. The advantageous features of the proposed structure are valuable for integration based on popular planar technology and optical communications systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu, G.Q., Hu, H.H., Liao, Y.B., Wang, Z.S., Chen, Y., Liu, Z.M.: Synthesis and photonic band gap characterization of high quality photonic crystal heterostructures. Optik 122(1), 9–13 (2011)

    Article  Google Scholar 

  2. Talebzadeh, R., Soroosh, M.: A high quality complete coupling 4-channel demultiplexer based on photonic crystal ring resonators. Optoelectron. Adv.Mater. Rapid Commun. 9(1–2), 5–9 (2015)

    Google Scholar 

  3. Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Optik-Int. J. Light Electron Opt. 123(6), 534–536 (2012)

    Article  Google Scholar 

  4. Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T-shaped channel drop filter based on photonic crystal ring resonator. Optik-Int. J. Light Electron Opt. 125(18), 5348–5351 (2014)

    Article  Google Scholar 

  5. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystal: Modeling of Flow of Light Princeton University Press, New Jersey (1995)

  6. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)

    Article  Google Scholar 

  7. Gedney, S.D.: Introduction to the finite-difference time-domain (FDTD) method for electromagnetics. Synth. Lect. Comput. Electromagn. 6(1), 1–250 (2011)

    Article  Google Scholar 

  8. Mohammadi, M., Seifouri, M.: A new proposal for a high-performance 4-channel demultiplexer based on 2D photonic crystal using three cascaded ring resonators for applications in advanced optical systems. Opt. Quant. Electron. 51(11), 350 (2019)

    Article  Google Scholar 

  9. Kannaiyan, V., Savarimuthu, R., Dhamodharan, S.K.: Investigation of 2D-photonic crystal resonant cavity based WDM demultiplexer. Opto-Electron. Rev. 26(2), 108–115 (2018)

    Article  Google Scholar 

  10. Zhao, T., Asghari, M., & Mehdizadeh, F. (2019). An all-optical digital 2-to-1 multiplexer using photonic crystal-based nonlinear ring resonators. J. Electron. Mater. 48(4), 2482–2486.

    Article  Google Scholar 

  11. Xiong, Y., Umeda, T., Zhang, X., Morifuji, M., Kajii, H., Maruta, A., Kondow, M.: Photonic Crystal Circular-Defect Microcavity Laser Designed for Wavelength Division Multiplexing. IEEE J. Sel. Top. Quantum Electron. 24(6), 1–7 (2018)

    Article  Google Scholar 

  12. Sreenivasulu, T., Bhowmick, K., Samad, S.A., Yadunath, T.I.R., Badrinarayana, T., Hegde, G.M., Srinivas, T.: Photonic crystal ring resonator-based four-channel dense wavelength division multiplexing demultiplexer on silicon on insulator platform: design and analysis. Opt. Eng. 57(4), 046109 (2018)

    Article  Google Scholar 

  13. Mohammadi, M., Fallahi, V., Seifouri, M.: Optimization and performance analysis of all-optical compact 4 and 5-channel demultiplexers based on 2D PC ring resonators for applications in advanced optical communication systems. Silicon (2020). https://doi.org/10.1007/s12633-020-00614-y

    Article  Google Scholar 

  14. Mohammadi, B., Soroosh, M., Kovsarian, A., Kavian, Y.S.: Improving the transmission efficiency in eight-channel all optical demultiplexers. Photonic Netw. Commun. 38(1), 115–120 (2019)

    Article  Google Scholar 

  15. Zahedi, A., Parandin, F., Karkhanehchi, M.M., Shams, H.H., Rajamand, S.: Design and simulation of optical 4-channel demultiplexer using photonic crystals. J. Opt. Commun. 40(1), 17–20 (2019)

    Article  Google Scholar 

  16. Xu, L., Wang, Y., Mao, D., El-Fiky, E., Xing, Z., Kumar, A., Saber, M.G., Jacques, M., Plant, D.V.: Broadband 1310/1550 nm wavelength demultiplexer based on a multimode interference coupler with tapered internal photonic crystal for the silicon-on-insulator platform. Opt. Lett. 44(7), 1770–1773 (2019)

    Article  Google Scholar 

  17. Fan, Y., Le Roux, X., Lupu, A., de Lustrac, A.: Ultra-compact on-chip metaline-based 1.3/1.6 μm wavelength demultiplexer. Photonics Res. 7(3), 359–362 (2019)

    Article  Google Scholar 

  18. Mohammadi, M., Seifouri, M.: Numerical investigation of photonic crystal ring resonators coupled bus waveguide as a highly sensitive platform. Photonics Nanostruct. Fundam. Appl. 34, 11–18 (2019)

    Article  Google Scholar 

  19. Mohammadi, M., Olyaee, S., & Seifouri, M. (2018). Passive Integrated Optical Gyroscope Based on Photonic Crystal Ring Resonator for Angular Velocity Sensing. Silicon, 1–8.

  20. Mohammadi, M., Seifouri, M., Boyerahmadi, E.: Exploring refractive index ultra compact nano sensor using photonic crystal resonant cavities. J. Comput. Theor. Nanosci. 17(7), 2926–2931 (2020)

    Article  Google Scholar 

  21. Mohammadi, M., Mansouri-Birjandi, M.A.: Five-port power splitter based on pillar photonic crystal. Iran. J. Sci. Technol. Trans. Electr. Eng. 39(E1), 93–100 (2015)

    Google Scholar 

  22. Shi, S., Sharkawy, A., Chen, C., Pustai, D.M., Prather, D.W.: Dispersion-based beam splitter in photonic crystals. Opt. Lett. 29(6), 617–619 (2004)

    Article  Google Scholar 

  23. Brunetti, G., Dell’Olio, F., Conteduca, D., Armenise, M.N., Ciminelli, C.: Ultra-compact tuneable notch filter using silicon photonic crystal ring resonator. J. Light. Technol. 37, 2970–2980 (2019)

    Article  Google Scholar 

  24. Mohammadi, M., Seifouri, M., Boyerahmadi, E., Udaiyakumar, R.: Exploring refractive index ultra compact nano sensor using photonic crystal resonant cavities. J. Comput. Theor. Nanosci. 17(7), 2926–2931 (2020)

    Article  Google Scholar 

  25. Zhang, Y., Li, P., Chen, Y., Han, Y.: Four-channel THz wave routing switch based on magneto photonic crystals. Optik 181, 134–139 (2019)

    Article  Google Scholar 

  26. Moura, J.P., Norte, R.A., Guo, J., Schäfermeier, C., Gröblacher, S.: Centimeter-scale suspended photonic crystal mirrors. Opt. Express 26(2), 1895–1909 (2018)

    Article  Google Scholar 

  27. Mohammadi, M., Fallahi, V., Seifouri, M.: Ultracompact all-optical full adders using an interference effect based on 2D photonic crystal nanoring resonators. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01619-x

    Article  Google Scholar 

  28. Curilla, L., Astrauskas, I., Pugzlys, A., Stajanca, P., Pysz, D., Uherek, F., Baltuska, A., Bugar, I.: Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching. Opt. Fiber Technol. 42, 39–49 (2018)

    Article  Google Scholar 

  29. Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018)

    Article  Google Scholar 

  30. Sreenivasulu, T., Rao, V., Badrinarayana, T., Hegde, G., Srinivas, T.: Photonic crystal ring resonator based force sensor: design and analysis. Optik 155, 111–120 (2018)

    Article  Google Scholar 

  31. Salmanpour, A., Mohammadnejad, S., Bahrami, A.: All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62(9), 693–700 (2015)

    Article  MathSciNet  Google Scholar 

  32. Venkatachalam, K., Kumar, D.S., and Robinson, S.: Analysis and design of photonic crystal based demultiplexer. In: 2015 3rd International Conference on Signal Processing, Communication and Networking (ICSCN), pp. 1–4. IEEE, (2015, March)

  33. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29(2), 146–150 (2015)

    Article  Google Scholar 

  34. Pozar, DM.: Microwave engineering. John Wiley & Sons (2011)

  35. Pozar, D.M.: Microwave Engineering. John Wiley & Sons, New York (2009)

    Google Scholar 

  36. Yang, J., Fan, F., Taghikhani, P., Vosoogh, A.: Half-height-pin gap waveguide technology and its applications in high gain planar array antennas at millimeter wave frequency. IEICE Trans. Commun. 101(2), 285–292 (2018)

    Article  Google Scholar 

  37. Naghizade, S., Sattari-Esfahlan, S.M.: An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J. Opt. Commun. 41(1), 37–43 (2019)

    Article  Google Scholar 

  38. Talebzadeh, R., Soroosh, M., Daghooghi, T.: A 4-channel demultiplexer based on 2D photonic crystal using line defect resonant cavity. IETE J. Res. 62(6), 866–872 (2016)

    Article  Google Scholar 

  39. Venkatachalam, K., Kumar, D.S., Robinson, S.: Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photon Netw. Commun. 34(1), 100–110 (2017)

    Article  Google Scholar 

  40. Mohammadi, M., Seifouri, M.: Numerical simulation of all optical demultiplexer based on pillar photonic crystal ring resonators. Int. J. Numer. Model. Electron. Netw. Devices Fields 32(2), e2527 (2019)

    Article  Google Scholar 

  41. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31(1), 65–70 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Seifouri, M., Olyaee, S. et al. Optimization and realization all-optical compact five-channel demultiplexer using 2D photonic crystal based hexagonal cavities. J Comput Electron 20, 984–992 (2021). https://doi.org/10.1007/s10825-021-01671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01671-1

Keywords

Navigation