Skip to main content
Log in

Optical wavelength demultiplexer based on photonic crystal ring resonators

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Improving transmission efficiency, quality factor, channel spacing and crosstalk levels are the top priorities in designing optical demultiplexers, suitable for wavelength division multiplexing applications. In this paper, we proposed a novel structure for designing optical demultiplexer based on photonic crystal ring resonator. For performing wavelength selection task, we used four ring resonators. The resonance wavelength of the ring resonators depends on the dimensions of the ring core; therefore, we chose two different values for the lattice constant of the ring resonators core section. The channel spacing of the structure is about 3 nm, the minimum transmission efficiency is more than 95 %, the overall quality factor is more than 2,600, and finally the crosstalk levels are better than \(-\)19 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akosman, A.E., Mutlu, M., Kurt, H., Ozbay, E.: Dual-frequency division de-multiplexer based on cascade photonic crystal waveguides. Physica B (2012). doi:10.1016/j.physb.2012.02.024

  2. Momeni, B., Huan, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., Adibi, A.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 42, 2410–2422 (2006)

    Google Scholar 

  3. Bernier, D., Le Roux, X., Lupu, D., Marris-Morini, A., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal superprism. Opt. Express 42, 17260–17214 (2008)

    Google Scholar 

  4. Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 48, 26518–26528 (2010)

    Google Scholar 

  5. Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultra-compact wavelength division demultiplexer based on photonic band gap. Opt. Commun. 285, 274–276 (2012)

    Article  Google Scholar 

  6. Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic cavity based WDM multiplexer. Photon. Nanostrucut. Fundam. Appl. 5, 164–176 (2007)

    Article  Google Scholar 

  7. Rostami, A., Alipour Banei, H., Nazari, F., Bahrami, A.: An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 466, 1481–1485 (2011)

    Article  Google Scholar 

  8. Rostami, A., Nazari, F., Alipour Banaei, H., Bahrami, A.: A nove proposal for DWDM demultiplexer design using modified T P\(\backslash \)photonic crystal structure. Photon. Nanostrucut. Fundam. Appl. 8, 14–22 (2010)

  9. Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik 125, 2639–2644 (2013)

    Article  Google Scholar 

  10. Alipour-Banaei, H., Hassangholizadeh-Kashtiban, M., Mehdizadeh, F.: WDM and DWDM optical filter based on 2D photonic crystal Thue–Morse structure. Optik 125, 4416–4420 (2013)

    Article  Google Scholar 

  11. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division multiplexers using photonic crystal ring resonators. Opt. Commun. 281, 4028–4032 (2008)

    Article  Google Scholar 

  12. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Physica E 40, 3151–3154 (2008)

    Article  Google Scholar 

  13. Djavid, M., Abrishamian, M.S.: Multi-channel drop filters using photonic crystal ring resonators. Optik 123, 167–170 (2011)

    Article  Google Scholar 

  14. Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Optik (2012). doi:10.1016/j.ijleo.2012.01.045

    Google Scholar 

  15. Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filter based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Article  Google Scholar 

  16. Kim, S., Cai, J., Jiang, J., Nordin, G.P.: New ring resonator configuration using hybrid photonic crystal and conventional waveguide structures. Opt. Express 11, 2356–2364 (2004)

    Article  Google Scholar 

  17. Rakhshani, M.R., Birjandi, M.A.M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Physica E 50, 97–101 (2013)

  18. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)

    Article  Google Scholar 

  19. Gedney, S.D.: Introduction to Finite-Difference Time-Domain (FDTD) Method for Electromagnetics. Morgan&Claypool, Lexington, KY (2010

  20. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Channel-Drop filter based on a photonic crystal ring resonator. J. Opt. 15, 075401 (2013). (7pp).

    Article  Google Scholar 

  21. Qiu, M.: Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals. Appl. Phys. Lett. 81, 1163–1165 (2002)

    Article  Google Scholar 

  22. Birjandi, M.A.M., Rakhshani, M.R.: A new design of tunable four port wavelength demultiplexer by photonic crystals ring resonators. Optik 124, 5923–5926 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaye Serajmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour-Banaei, H., Serajmohammadi, S. & Mehdizadeh, F. Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw Commun 29, 146–150 (2015). https://doi.org/10.1007/s11107-014-0483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-014-0483-x

Keywords

Navigation