Skip to main content
Log in

Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In the twenty-first century, graphene is widely used in wireless communication, especially in terahertz applications because of its amazing electrical, mechanical, and optical properties. This paper presents a graphene-based microstrip patch antenna at 0.72 THz resonant frequency for wireless communication. The proposed antenna shows 37.50% impedance bandwidth ranging from 0.53 to 0.84 THz at the center frequency of 0.72 THz. The result is demonstrated in terms of return loss (s11 < − 10 dB), voltage standing wave ratio (VSWR), input impedance, E-plane, and H-plane radiation pattern. The designing and simulation are performed using a full-wave electromagnetic simulator CST microwave studio based on the finite difference time domain method. The simulation output shows a minimal return loss − 59.97 dB, VSWR 1.007, and good radiation pattern at 0.72 THz resonant frequency, which would be an excellent candidate for future wireless communication as well as medical imaging, homeland defense system, explosive detection, and material characterization application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khan, M.A.K., Shaem, T.A., Alim, M.A.: Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation. Optik 194, 163012 (2019)

    Article  Google Scholar 

  2. Son, J.H.: Terahertz electromagnetic interactions with biological matter and their applications. J. Appl. Phys. 105(10), 102033 (2009)

    Article  Google Scholar 

  3. Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014)

    Article  Google Scholar 

  4. Kushwaha, R.K., Karuppanan, P.: Enhanced radiation characteristics of graphene-based patch antenna array employing photonic crystals and dielectric grating for THz applications. Optik 200, 163422 (2020)

    Article  Google Scholar 

  5. Sun, P.L.: 420-GHz terahertz SIW slot antenna with quartz superstrates in silicon technology. Optoelectron. Lett. 16(1), 25–28 (2020)

    Article  Google Scholar 

  6. Ghosh, S., Das, S., Samantaray, D., Bhattacharyya, S.: Meander-line-based defected ground microstrip antenna slotted with split-ring resonator for terahertz range. Eng. Rep. 2(1), e12088 (2020)

    Google Scholar 

  7. Divya, C., Koushick, V.: Design and implementation of slotted metamaterial stacked microstrip patch antenna for broadband applications. J. Phys: Conf. Ser. 1432(1), 012067 (2020)

    Google Scholar 

  8. Shalini, M.: Performance predictions of slotted graphene patch antenna for multi-band operation in terahertz regime. Optik 204, 164223 (2020)

    Article  Google Scholar 

  9. Kushwaha, R.K., Karuppanan, P.: Parasitic-coupled high-gain graphene antenna employed on PBG dielectric grating substrate for THz applications. Microw. Opt. Technol. Lett. 62(1), 439–447 (2020)

    Article  Google Scholar 

  10. Khani, S., Danaie, M., Rezaei, P.: Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog Integr. Circuits Signal Process. 98(2), 367–376 (2019)

    Article  Google Scholar 

  11. Kiani, N., Afsahi, M.: Design and fabrication of a compact SIW diplexer in C-band. Iran. J. Electr. Electron. Eng. 15(2), 189–194 (2019)

    Google Scholar 

  12. Yang, Z., Lu, R., Wang, Y., Cai, S., Zhang, Y., Wang, X., Liu, Y.: A fabrication-friendly graphene-based polarization insensitive optical modulator. Optik 182, 1093–1098 (2019)

    Article  Google Scholar 

  13. Chashmi, M.J., Rezaei, P., Kiani, N.: Y-shaped graphene-based antenna with switchable circular polarization. Optik 200, 163321 (2020)

    Article  Google Scholar 

  14. Khani, S., Danaie, M., Rezaei, P.: Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 420, 147–156 (2018)

    Article  Google Scholar 

  15. Javanshir, S., Pourziad, A., Nikmehr, S.: Optical temperature sensor with micro ring resonator and graphene to reach high sensitivity. Optik 180, 442–446 (2019)

    Article  Google Scholar 

  16. Biabanifard, M., Asgari, S., Biabanifard, S., Abrishamian, M.S.: Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik 182, 433–442 (2019)

    Article  Google Scholar 

  17. Vahedian, M., Naser-Moghadasi, M.: Surface distortion compensation in nano particle by using the graphene layer to obtain reconfigurable absorber. Optik 160, 259–266 (2018)

    Article  Google Scholar 

  18. Toqeer, I., Ghaffar, A., Naz, M.Y., Sultana, B.: Characteristics of dispersion modes supported by graphene chiral graphene waveguide. Optik 186, 28–33 (2019)

    Article  Google Scholar 

  19. Wu, W., Zhang, J., Li, Y., Chen, W., Wang, P., Li, S., Ding, J., Zhang, B., Lu, H., Li, J., Fu, Q.: Numerical investigation of an electro-optic majority voting circuit utilizing graphene–silicon nitride waveguides. Optik 186, 205–211 (2019)

    Article  Google Scholar 

  20. AzimBeik, M., Moradi, G., Shirazi, R.S.: Graphene-based switched line phase shifter in THz band. Optik 172, 431–436 (2018)

    Article  Google Scholar 

  21. Efazat, S.S., Basiri, R., Makki, S.V.A.D.: The gain enhancement of a graphene loaded reconfigurable antenna with non-uniform metasurface in terahertz band. Optik 183, 1179–1190 (2019)

    Article  Google Scholar 

  22. Anand, S., Kumar, D.S., Wu, R.J., Chavali, M.: Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik 125(19), 5546–5549 (2014)

    Article  Google Scholar 

  23. Samanta, G., Mitra, D.: Wideband THz antenna using graphene based tunable circular reactive impedance substrate. Optik 158, 1080–1087 (2018)

    Article  Google Scholar 

  24. Bazgir, M., Naser-Moghadasi, M., Zarrabi, F.B., Arezomand, A.S., Heydari, S.: Nano particle implementation in nano loop antenna for energy harvesting application and light trapping. Optik 132, 127–133 (2017)

    Article  Google Scholar 

  25. Bansal, G., Singh, A., Bala, R.: A triband slotted bow-tie wideband THz antenna design using graphene for wireless applications. Optik 185, 1163–1171 (2019)

    Article  Google Scholar 

  26. Kazemi, A.H., Mahani, F.F., Mokhtari, A.: Peak amplitude enhancement of photoconductive antenna using periodic nanoslit and graphene in the THz band. Optik 185, 114–120 (2019)

    Article  Google Scholar 

  27. Chashmi, M.J., Rezaei, P., Kiani, N.: Polarization controlling of multi resonant graphene-based microstrip antenna. Plasmonics 15(2), 417–426 (2020)

    Article  Google Scholar 

  28. Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008)

    Article  Google Scholar 

  29. Hanson, G.W.: Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 56(3), 747–757 (2008)

    Article  MathSciNet  Google Scholar 

  30. Bala, R., Singh, R., Marwaha, A., Marwaha, S.: Wearable graphene based curved patch antenna for medical telemetry applications. Appl. Comput. Electromagn. Soc. J. 31(5), 543–550 (2016)

    Google Scholar 

  31. Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446(7131), 60–63 (2007)

    Article  Google Scholar 

  32. Bala, R., Marwaha, A., Marwaha, S.: Mathematical formulation of surface conductivity for graphene material. J. Eng. Sci. Technol. 12(6), 1677–1684 (2017)

    Google Scholar 

  33. Nickpay, M.R., Danaie, M., Shahzadi, A.: Wideband rectangular double-ring nanoribbon graphene-based antenna for terahertz communications. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1661801

    Article  Google Scholar 

  34. Younssi, M., Jaoujal, A., Yaccoub, M.D., El Moussaoui, A., Aknin, N.: Study of a microstrip antenna with and without superstrate for terahertz frequency. Int. J. Innov. Appl. Stud. 2(4), 369–371 (2013)

    Google Scholar 

  35. Nejati, A., Sadeghzadeh, R.A., Geran, F.: Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency. Phys. B 449, 113–120 (2014)

    Article  Google Scholar 

  36. Sirmaci, Y.D., Akin, C.K., Sabah, C.: Fishnet based metamaterial loaded THz patch antenna. Opt. Quantum Electron. 48(2), 168 (2016)

    Article  Google Scholar 

  37. Dhillon, A.S., Mittal, D., Sidhu, E.: THz rectangular microstrip patch antenna employing polyimide substrate for video rate imaging and homeland defence applications. Optik 144, 634–641 (2017)

    Article  Google Scholar 

  38. Kushwaha, R.K., Karuppanan, P., Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys. B 545, 107–112 (2018)

    Article  Google Scholar 

  39. Khattak, M.I., Sohail, A., Khan, U., Barki, Z., Witjaksono, G.: Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks. Prog. Electromagn. Res. 89, 133–147 (2019)

    Article  Google Scholar 

  40. Kaur, G., Mehta, V., Sidhu, E.: Rectangular terahertz microstrip patch antenna design for vitamin K2 detection applications. In: 2017 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech), pp. 1–3. IEEE (2017)

  41. Singh, A., Singh, S.: A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications. Photonics Nanostruct. Fundam. Appl. 14, 52–62 (2015)

    Article  Google Scholar 

  42. Balanis, C.A.: Antenna Theory Analysis and Design, 2nd edn. Wiley, New York (1997)

    Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Shamim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, S.M., Uddin, M.S., Hasan, M. et al. Design and implementation of miniaturized wideband microstrip patch antenna for high-speed terahertz applications. J Comput Electron 20, 604–610 (2021). https://doi.org/10.1007/s10825-020-01587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01587-2

Keywords

Navigation