Skip to main content
Log in

Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A novel microstrip dual-band bandpass filter (BPF) with bended microstrip lines, rectangular resonators and stepped impedance resonator (SIR) is designed, analyzed and fabricated. This circuit provides two pass-bands with the center frequencies of 3.6 and 5.7 GHz. Moreover, the LC equivalent circuits of the basic and main resonators are meticulously computed so as to present an analytical description. The surface current distributions of the proposed filter are shown to verify the performance of the filter and provide physical insight. The measured data of the proposed filter indicate that the insertion losses are better than 0.53 and 0.67 dB and the return losses are 25 and 24.7 dB in the first and second bands, respectively. One of the most outstanding features of the proposed filter is that the upper band can be tuned between 5.7 and 8.4 GHz without any increment in the circuit size. The compact size, wide upper stop-band bandwidth, low insertion loss, sharp transition bands, and high attenuation level in the stop-bands are the other marked positive points of the designed filter. Finally, a suitable agreement between the simulated and measured S-parameters can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hong, J. S., & Lancaster, M. J. (2001). Microstrip filters for RF/microwave applications. New York: Wiley.

    Book  Google Scholar 

  2. Pozar, D. M. (1998). Microwave engineering (2nd ed.). New York: Wiley.

    Google Scholar 

  3. Yang, S., Lin, L., Chen, J., Deng, K., & Liang, C. H. (2014). Design of compact dual-band bandpass filter using dual-mode stepped-impedance stub resonators. Electronics Letters, 50(8), 611–613.

    Article  Google Scholar 

  4. Chomtong, P., & Akkaraekthalin, P. (2014). A triple-band bandpass filter using tri-section step-impedance and capacitively loaded step-impedance resonators for GSM, WiMAX, and WLAN systems. Frequenz, 68(5–6), 227–234.

    Google Scholar 

  5. Lin, L., Sun, S. J., Wu, B., & Liang, C. H. (2014). Dual-band bandpass filter with wide upper stopband using quad-mode stepped impedance stub-loaded resonator. Electronics Letters, 50(16), 1145–1146.

    Article  Google Scholar 

  6. Chen, C. F., Chang, S. F., Tseng, B. H., & Weng, J. H. (2014). Compact dual-band stepped-impedance resonator filter with separate coupling paths. Electronics Letters, 50(21), 1551–1552.

    Article  Google Scholar 

  7. Ding, C., Li, J., Wei, F., & Shi, X. W. (2016). Compact bandpass filter based on parallel-coupled lines and quasi-lumped structure. Frequenz, 70(1–2), 11–15.

    Google Scholar 

  8. Xu, J. (2016). Compact dual-band bandpass filter using stubs loaded ring resonator. Frequenz, 70(1–2), 17–22.

    Google Scholar 

  9. Annaram, K., & Shenbagadevi, V. (2016). Implementation of harmonics-free narrow-band microstrip bandpass filter using complementary split ring resonator. International Journal of Electronics Letters, 4(2), 188–196.

    Article  Google Scholar 

  10. Rezaee, P., & Höft, M. (2017). Design and fabrication of a novel compact bandpass filter to improve spurious-free band. Frequenz, 71(3–4), 121–128.

    Google Scholar 

  11. Chen, L., Li, X. Y., & Wei, F. (2017). A compact quad-band bandpass filter based on defected microstrip structure. Frequenz, 71(7–8), 311–316.

    Google Scholar 

  12. Ieu, W., Zhang, D., & Zhou, D. (2017). High-selectivity dual-mode dual-band microstrip bandpass filter with multi-transmission zeros. Electronics Letters, 53(7), 482–484.

    Article  Google Scholar 

  13. Duan, Q., Song, K., Chen, F., & Fan, Y. (2015). Compact dual-band bandpass filter using simply hybrid structures. Electronics Letters, 51(16), 1265–1266.

    Article  Google Scholar 

  14. Tang, C. W., Lu, H. X., & Tseng, C. T. (2013). Design of a dual-band bandpass filter with a wide stopband. Electronics Letters, 49(10), 661–662.

    Article  Google Scholar 

  15. Wu, Y., Zhou, S., Zhang, W., Liao, M., & Liu, Y. (2014). Coupled-line dual-band bandpass filter with compact structure and wide stopband. Electronics Letters, 50(3), 187–189.

    Article  Google Scholar 

  16. Hasan, A., Hannan, A., & Nadeem, A. E. (2015). Improved microstrip hairpinline bandpass filter using via ground holes and capacitive gap. Analog Integrated Circuits and Signal Processing, 86(2), 267–274.

    Article  Google Scholar 

  17. Khani, S., Mousavi, S. M. H., Danaie, M., & Rezaei, P. (2018). Tunable compact microstrip dual-band bandpass filter with tapered resonators. Microwave and Optical Technology Letters, 60(4), 1256–1261.

    Article  Google Scholar 

  18. Danaeian, M., Zarezadeh, E., & Ghayoumi-Zadeh, H. (2018). A compact and high performance dual-band bandpass filter based on unbalanced composite right/left-handed transmission lines for WLANs applications. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-018-1104-x.

    Google Scholar 

  19. Wu, G. C., Wang, G., Liang, J. G., Gao, X. J., & Zhu, L. (2015). Miniaturised microstrip dual-band bandpass filter using novel symmetric double-spiral resonators for WLAN application. Electronics Letters, 51(15), 1177–1178.

    Article  Google Scholar 

  20. Olvera-Cervantes, J. L., & Corona-Chavez, A. (2015). Dual-band bandpass filter with independent passbands using resonant junctions. Journal of Electromagnetic Waves and Applications, 29(14), 1935–1941.

    Article  Google Scholar 

  21. Li, Q., Zhang, Y., Li, D., & Li, J. L. W. (2015). Miniaturized tri-band bandpass filters based on multi-mode resonators with pseudo-interdigital structure. Electromagnetics, 35(7), 488–497.

    Article  Google Scholar 

  22. Khani, S., Makki, S. V. A., Mousavi, S. M. H., Danaie, M., & Rezaei, P. (2017). Adjustable compact dual-band microstrip bandpass filter using T-shaped resonators. Microwave and Optical Technology Letters, 59(12), 2970–2975.

    Article  Google Scholar 

  23. Cao, X., Tang, Z., Wang, F., Wu, Y., & Zhang, B. (2013). A novel dual-band bandpass filter using CRLH triangle mushroom structure and DGS. Microwave and Optical Technology Letters, 55(11), 2756–2759.

    Article  Google Scholar 

  24. Song, K., Zhang, F., & Fan, Y. (2014). Miniaturized dual-band bandpass filter with good frequency selectivity using SIR and DGS. AEU-International Journal of Electronics and Communications, 68(5), 384–387.

    Article  Google Scholar 

  25. Amiri, S., & Khajavi, M. (2016). Improvement the design of microwave dual-band BPF by DGS technique. Microwave and Optical Technology Letters, 58(9), 2133–2137.

    Article  Google Scholar 

  26. Khani, S., & Hayati, M. (2017). Compact microstrip lowpass filter with wide stopband and sharp roll-off. Microwave Journal, 60(11), 86–92.

    Google Scholar 

  27. Imani, M. A., Shama, F., Alirezapoori, M., & Ekhteraei, M. (2018). Miniaturized microstrip lowpass filter using cylindrical-shaped resonators for integrated applications. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-018-1176-7.

    Google Scholar 

  28. Fakharian, M. M., Rezaei, P., Orouji, A. A., & Soltanpur, M. (2016). A wideband and reconfigurable filtering slot antenna. IEEE Antennas and Wireless Propagation Letters, 15, 1610–1613.

    Article  Google Scholar 

  29. Sharbati, V., Rezaei, P., & Fakharian, M. M. (2017). Compact planar UWB antenna with enhanced bandwidth and switchable band-notch function for WLAN and DSRC. IETE Journal of Research, 63(6), 805–812.

    Article  Google Scholar 

  30. Nasrabadi, E., & Rezaei, P. (2016). A novel design of reconfigurable monopole antenna with switchable triple band-rejection for UWB applications. International Journal of Microwave and Wireless Technologies, 8(8), 1223–1229.

    Article  Google Scholar 

  31. Nova, O. A., Bohórquez, J. C., Peña, N. M., Bridges, G. E., Shafai, L., & Shafai, C. (2012). Design procedure of a filter-antenna module implemented in substrate integrated waveguide technology. Analog Integrated Circuits and Signal Processing, 73(3), 895–907.

    Article  Google Scholar 

  32. Khani, S., Danaie, M., & Rezaei, P. (2018). Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Optics Communications, 420, 147–156.

    Article  Google Scholar 

  33. Hu, N., Zhang, G., An, H., Shi, Y., & Gu, M. (2017). Design and optimization of the multifunctional rectangular cavity band-pass filter based on the surface plasmon polariton. Plasmonics, 12(5), 1457–1462.

    Article  Google Scholar 

  34. Boutejdar, A., Batmanov, A., Awida, M. H., Burte, E. P., & Omar, A. (2010). Design of a new bandpass filter with sharp transition band using multilayer-technique and U-defected ground structure. IET Microwaves, Antennas and Propagation, 4(9), 1415–1420.

    Article  Google Scholar 

  35. Kang, W., Hong, W., & Zhou, J. Y. (2008). Performance improvement and size reduction of microstrip dual-mode bandpass filter. Electronics Letters, 44(6), 421–422.

    Article  Google Scholar 

  36. Kim, C., Hyeon Lee, T., Shrestha, B., & Chul Son, K. (2017). Miniaturized dual-band bandpass filter based on stepped impedance resonators. Microwave and Optical Technology Letters, 59(5), 1116–1119.

    Article  Google Scholar 

  37. Salehi, M. R., Abiri, E., & Noori, L. (2014). Design of a microstrip dual-band bandpass filter with compact size and tunable resonance frequencies for WLAN applications. International Journal of Computer & Electrical Engineering, 6(3), 248–251.

    Article  Google Scholar 

  38. Wei, F., Qin, P. Y., Guo, Y. J., Ding, C., & Shi, X. W. (2016). Compact balanced dual-and tri-band BPFs based on coupled complementary split-ring resonators (C-CSRR). IEEE Microwave and Wireless Components Letters, 26(2), 107–109.

    Article  Google Scholar 

  39. Tang, M. C., Shi, T., Chen, S., & Cao, H. (2016). Dual-band bandpass filter based on a single triple-mode ring resonator. Electronics Letters, 52(9), 722–724.

    Article  Google Scholar 

  40. Avinash, K. G., & Srinivasa Rao, I. (2017). Compact dual-band bandpass filter based on dual-mode modified star shaped resonator. Microwave and Optical Technology Letters, 59(3), 505–511.

    Article  Google Scholar 

  41. Mohammadi, B., Valizade, A., Nourinia, J., & Rezaei, P. (2014). Design of a compact dual-band-notch ultra-wideband bandpass filter based on wave cancellation method. IET Microwaves, Antennas and Propagation, 9(1), 1–9.

    Article  Google Scholar 

  42. Mohammadi, B., Valizade, A., Rezaei, P., & Nourinia, J. (2015). New design of compact dual band-notch ultra-wideband bandpass filter based on coupled wave canceller inverted T-shaped stubs. IET Microwaves, Antennas and Propagation, 9(1), 64–72.

    Article  Google Scholar 

Download references

Acknowledegements

This work was supported by Semnan University. The filter measurement was done by Iran Telecommunication Research Center (ITRC). The authors would like to thank all the members of the Communication Technology Laboratory at ITRC, especially Mr. Solat, Mr. Akhlaghpasandi for their cooperation. The authors would also like to thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Danaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khani, S., Danaie, M. & Rezaei, P. Miniaturized microstrip dual-band bandpass filter with wide upper stop-band bandwidth. Analog Integr Circ Sig Process 98, 367–376 (2019). https://doi.org/10.1007/s10470-018-1254-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1254-x

Keywords

Navigation