Skip to main content
Log in

Computational study of Fermi kinetics transport applied to large-signal RF device simulations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A detailed description and analysis of the Fermi kinetics transport (FKT) equations for simulating charge transport in semiconductor devices is presented. The fully coupled nonlinear discrete FKT equations are elaborated, as well as solution methods and work-flow for the simulation of RF electronic devices under large-signal conditions. The importance of full-wave electromagnetics is discussed in the context of high-speed device simulation, and the meshing requirements to integrate the full-wave solver with the transport equations are given in detail. The method includes full semiconductor band structure effects to capture the scattering details for the Boltzmann transport equation. The method is applied to high-speed gallium nitride devices. Finally, numerical convergence and stability examples provide insight into the mesh convergence behavior of the deterministic solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hess, K.: Advanced Theory of Semiconductor Devices. Prentice-Hall, Englewood Cliffs (2000)

    Google Scholar 

  2. Jacoboni, C.: Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions. Springer, Berlin (2010)

    Book  Google Scholar 

  3. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335 (1949)

    Article  Google Scholar 

  4. Fischetti, M., Laux, S.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721 (1988)

    Article  Google Scholar 

  5. Saraniti, M., Goodnick, S.M.: Hybrid fullband cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors. IEEE Trans. Electron Devices 47(10), 1909 (2000)

    Article  Google Scholar 

  6. Willis, K.J., Hagness, S.C., Knezevic, I.: Multiphysics simulation of high-frequency carrier dynamics in conductive materials. J. Appl. Phys. 110, 1 (2011)

    Article  Google Scholar 

  7. Guerra D.: GaN HEMT modeling and design for millimeter and sub-millimeter wave power amplifiers through Monte Carlo particle-based device simulations. Ph.D. thesis (2011)

  8. Latorre-Rey, A.D., Sabatti, F.F.M., Albrecht, J.D., Saraniti, M.: Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors. Appl. Phys. Lett. 013506, 111 (2017). https://doi.org/10.1063/1.4991665

    Article  Google Scholar 

  9. Yamakawa, S., Goodnick, S., Aboud, S., Saraniti, M.: Quantum corrected full-band cellular Monte Carlo simulation of AlGaN/GaN HEMTs. J. Comput. Electron. 3(3–4), 299 (2004)

    Article  Google Scholar 

  10. Sadi, T., Kelsall, R.W., Pilgrim, N.J.: Investigation of self-heating effects in submicrometer GaN/AlGaN HEMTs using an electrothermal Monte Carlo method. IEEE Trans. Electron Devices 53(12), 2892 (2006)

    Article  Google Scholar 

  11. Sridharan, S., Venkatachalam, A., Yoder, P.D.: Electrothermal analysis of AlGaN/GaN high electron mobility transistors. J. Comput. Electron. 7(3), 236 (2008)

    Article  Google Scholar 

  12. Ashok, A., Vasileska, D., Hartin, O.L., Goodnick, S.M.: Electrothermal Monte Carlo simulation of GaN HEMTs including electron-electron interactions. IEEE Trans. Electron Devices 57(3), 562 (2010)

    Article  Google Scholar 

  13. Russo, S., Carlo, A.D.: Influence of the source-gate distance on the AlGaN/GaN HEMT performance. IEEE Trans. Electron Devices 54(5), 1071 (2007)

    Article  Google Scholar 

  14. Scharfetter, D.L., Gummel, H.K.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices ED–16(1), 64 (1969)

    Article  Google Scholar 

  15. Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126(6), 2002 (1962)

    Article  Google Scholar 

  16. Blotekjaer, K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron Devices ED–17(1), 38 (1970)

    Article  Google Scholar 

  17. Grasser, T., Tang, T.W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251 (2003)

    Article  Google Scholar 

  18. Synopsys. Sentaurus device user guide (2013)

  19. Brannick, A., Zakhleniuk, N.A., Ridley, B.K., Eastman, L.F., Shealy, J.R., Schaff, W.J.: Hydrodynamic simulation of surface traps in the AlGaN/GaN HEMT. Microelectron. J. 40(3), 410 (2009)

    Article  Google Scholar 

  20. Wang, X.D., Hu, W.D., Chen, X.S., Lu, W.: The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Trans. Electron Devices 59(5), 1393 (2012)

    Article  Google Scholar 

  21. Vitanov, S., Palankovski, V., Maroldt, S., Quay, R., Murad, S., Rödle, T., Selberherr, S.: Physics-based modeling of GaN HEMTs. IEEE Trans. Electron Devices 59(3), 685 (2012)

    Article  Google Scholar 

  22. Bhardwaj, S., Sensale-Rodriguez, B., Xing, H.G., Volakis, J.L.: Full-wave hydrodynamic model for predicting THz emission from grating-gate RTD-gated plasma wave HEMTs. In: 2015 73rd Annual Device Research Conference (DRC) (2015)

  23. Grupen, M.: An alternative treatment of heat flow for charge transport in semiconductor devices. J. Appl. Phys. 106(12), 123702 (2009)

    Article  Google Scholar 

  24. Grupen, M.: Energy transport model with full band structure for GaAs electronic devices. J. Comput. Electron. 10(3), 271 (2011)

    Article  Google Scholar 

  25. Grupen, M.: Full wave electromagnetics and hot electron transport with electronic band structure for high speed semiconductor device simulation. IEEE Trans. Microw. Theory Tech. 62(12), 2868 (2014)

    Article  Google Scholar 

  26. Grupen, M.: GaN high electron mobility transistor simulations with full wave and hot electron effects. IEEE Trans. Electron Devices 63(8), 3096 (2016)

    Google Scholar 

  27. Franz, A., Franz, G., Selberherr, S., Ringhofer, C., Markowich, P.: Finite boxes—a generalization of the finite-difference method suitable for semiconductor device simulation. IEEE Trans. Electron Devices 30(9), 1070 (1983)

    Article  Google Scholar 

  28. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific Publishing Co Inc, Singapore (2013)

    Book  Google Scholar 

  29. Bowyer, A.: Computing Dirichlet tessellations. Comput. J. 24(2), 162 (1981)

    Article  MathSciNet  Google Scholar 

  30. Watson, D.F.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 24(2), 167 (1981)

    Article  MathSciNet  Google Scholar 

  31. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput. Surv. (CSUR) 23(3), 345 (1991)

    Article  Google Scholar 

  32. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inf. Sci. 9(3), 219 (1980)

    Article  MathSciNet  Google Scholar 

  33. Chew, L.P.: Constrained Delaunay triangulations. In: Proceedings of the Third Annual Symposium on Computational Geometry—SCG ’87. ACM Press, New York, pp. 215–222 (1987)

  34. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309 (2009)

    Article  MathSciNet  Google Scholar 

  35. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 1 (2015)

    Article  MathSciNet  Google Scholar 

  36. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637 (1999)

    Article  MathSciNet  Google Scholar 

  37. Xie, Z.Q., Hassan, O., Morgan, K.: Tailoring unstructured meshes for use with a 3D time domain co-volume algorithm for computational electromagnetics. Int. J. Numer. Methods Eng. 87((July 2010),), 48 (2011)

    Article  MathSciNet  Google Scholar 

  38. Sazonov, I., Wang, D., Hassan, O., Morgan, K., Weatherill, N.: A stitching method for the generation of unstructured meshes for use with co-volume solution techniques. Comput. Methods Appl. Mech. Eng. 195(13–16), 1826 (2006)

    Article  MathSciNet  Google Scholar 

  39. Walton, S., Hassan, O., Morgan, K.: Advances in co-volume mesh generation and mesh optimisation techniques. Comput. Struct. 181, 70 (2017)

    Article  Google Scholar 

  40. Hitschfeld, N., Conti, P., Fichtner, W.: Mixed element trees: a generalization of modified octrees for the generation of meshes for the simulation of complex 3-D semiconductor device structures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 12(11), 1714 (1993)

    Article  Google Scholar 

  41. Conti, P., Hitschfeld, N., Fichtner, W.: An octree-based mixed element grid allocator for the simulation of complex 3-D device structures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 10(10), 1231 (1991)

    Article  Google Scholar 

  42. Conti, P., Tomizawa, M., Yoshii, A.: Generation of oriented three-dimensional Delaunay grids suitable for the control volume integration method. Int. J. Numer. Methods Eng. 37(19), 3211 (1994). https://doi.org/10.1002/nme.1620371902

    Article  MathSciNet  MATH  Google Scholar 

  43. Synopsys. Mesh Generation Tools User Guide (2013)

  44. Krause, J.: On boundary conforming anisotropic Delaunay meshes. Ph.D. thesis (2001)

  45. Hitschfeld, N., Villablanca, L., Krause, J., Rivara, M.C.: Improving the quality of meshes for the simulation of semiconductor devices using Lepp-based algorithms. Int. J. Numer. Methods Eng. 58(2), 333 (2003)

    Article  Google Scholar 

  46. Miller, N.C., Albrecht, J.D., Grupen, M.: Delaunay–Voronoi surface integration: a full-wave electromagnetics discretization for electronic device simulation. Int. J. Numer. Model. Electron. Netw. Devices Fields 29(5), 817 (2016)

    Article  Google Scholar 

  47. Goano, M.: Series expansion of the Fermi-Dirac integral over the entire domain of real j and x. Solid State Electron. 36(2), 217 (1993)

    Article  Google Scholar 

  48. Sridharan, S., Christensen, A., Venkatachalam, A., Graham, S., Yoder, P.D.: Temperature- and doping-dependent anisotropic stationary electron velocity in wurtzite GaN. IEEE Electron Device Lett. 32(11), 1522 (2011)

    Article  Google Scholar 

  49. Keysight. www.keysight.com (2017)

  50. Marino, F.A., Faralli, N., Palacios, T., Ferry, D.K., Goodnick, S.M., Saraniti, M.: Effects of threading dislocations on AlGaN/GaN high-electron mobility transistors. IEEE Trans. Electron Devices 57(1), 353 (2010)

    Article  Google Scholar 

  51. Goodnick, S.M., Saraniti, M.: Modeling and simulation of terahertz devices. IEEE Microw. Mag. 13(7), 36 (2012)

    Article  Google Scholar 

  52. Miller, N.C., Albrecht, J.D., Grupen, M.: Delaunay–Voronoi surface integration: a full-wave electromagnetics discretization for electronic device simulation. In: 2016 74th Annual Device Research Conference (DRC) (IEEE), pp. 1–2 (2016)

    Article  Google Scholar 

  53. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  54. Jungel, A.: Qualitative behavior of solutions of a degenerate nonlinear drift-diffusion model for semiconductors. Math. Models Methods Appl. Sci. 5(4), 497 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-17RYCOR495 and the AF STTR Program (# FA8650-16-C-1764). Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the United States Government. SAND Number: SAND2018-9525 J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Miller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, N.C., Grupen, M., Beckwith, K. et al. Computational study of Fermi kinetics transport applied to large-signal RF device simulations. J Comput Electron 17, 1658–1675 (2018). https://doi.org/10.1007/s10825-018-1242-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1242-5

Keywords

Navigation