Skip to main content
Log in

Energy transport model with full band structure for GaAs electronic devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Electronic band structure is incorporated into a versatile energy transport model that treats heat flow between mobile electron ensembles with the thermodynamic identity for ideal gases instead of an electron thermal conductivity. This alleviates the closure issue common to thermal conductivity models and is amenable to different forms of charge gas transport. This flexibility allows the model to accommodate band dispersions typical of semiconductors. A simulation scheme and the device equations for a generalized band structure are presented. The model is then implemented for GaAs using a band structure calculated with the empirical pseudopotential method. Comparisons to Monte Carlo for certain bulk GaAs test cases indicate that the model may capture hot electron effects with sufficient accuracy and reduced computational cost suitable for larger scale device simulation and design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fawcett, W., Boardman, A., Swain, S.: Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31, 1963–1990 (1970)

    Article  Google Scholar 

  2. Shichijo, H., Hess, K.: Band-structure-dependent transport and impact ionization in GaAs. Phys. Rev. B 23(8), 4197–4207 (1981)

    Article  Google Scholar 

  3. Abramo, A., et al.: A comparison of numerical solutions of the Boltzmann transport equation for high-energy electron transport silicon. IEEE Trans. Electron Devices 23(9), 1646–1654 (1994)

    Article  Google Scholar 

  4. Saraniti, M., Goodnick, S.: Hybrid fullband cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors. IEEE Trans. Electron Devices 47(10), 1909–1916 (2000)

    Article  Google Scholar 

  5. Zhang, W., Du, G., Zhang, A., Mo, Z., Liu, X., Zhang, P.: A 3D parallel Monte Carlo simulator for semiconductor devices. IEEE Int. Workshop Comput. Electron. 1(1), 1–4 (2009)

    Google Scholar 

  6. Baraff, G.: Maximum anisotropy approximation for calculating electron distributions; application to high field transport in semiconductors. Phys. Rev. 133(1), 26–33 (1964)

    Article  Google Scholar 

  7. Liang, W., Goldsman, N., Mayergoyz, I., Oldiges, P.: 2-D MOSFET modeling including surface effects and impact ionization by self-consistent solution of the Boltzmann. Poisson, and hole-continuity equations. IEEE Trans. Electron Devices 44(2), 257–267 (1997)

    Article  Google Scholar 

  8. Vecchi, M., Mohring, J., Rudan, M.: An efficient solution scheme for the spherical-harmonics expansion of the Boltzmann transport equation. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 16(4), 353–361 (1997)

    Article  Google Scholar 

  9. Gnudi, A., Ventura, D., Baccarani, G.: Two-dimensional MOSFET simulation by means of a multidimensional spherical harmonics expansion of the Boltzmann transport equation. Solid-State Electron. 36(4), 575–581 (1993)

    Article  Google Scholar 

  10. Jungemann, C., Hong, S.M., Matz, G.: High-order spherical harmonics solution of the Boltzmann equation and noise modeling. Int. Workshop Comput. Electron. 1(1), 1–6 (2010)

    Article  Google Scholar 

  11. Rupp, K., Jungel, A., Grasser, T.: Matrix compression for spherical harmonics expansions of the Boltzmann transport equation for semiconductors. J. Comput. Phys. 229(1), 8750–8765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grasser, T., Tang, T.W., Kosina, H., Selberherr, S.: A review of hydrodynamic and energy-transport models for semiconductor device simulation. Proc. IEEE 91(2), 251–274 (2003)

    Article  Google Scholar 

  13. Grupen, M.: An alternative treatment of heat flow for charge transport in semiconductor devices. J. Appl. Phys. 106(1), 123702–123708 (2009)

    Article  Google Scholar 

  14. Stratton, R.: Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126(6), 2002–2014 (1962)

    Article  Google Scholar 

  15. Trovato, M., Reggiani, L.: Maximum-entropy principle for static and dynamic high-field transport in semiconductors. Phys. Rev. B 73(1), 245209–245225 (2006)

    Google Scholar 

  16. Vasicek, M., Cervenka, J., Wagner, M., Karner, M., Grasser, T.: A 2D non-parabolic six-moments model. Solid-State Electron. 52(1), 1606–1609 (2008)

    Article  Google Scholar 

  17. Kittel, C., Kroemer, H.: Thermal Physics (2nd ed.). Freeman, New York (1980)

    Google Scholar 

  18. Hess, K.: Advanced Theory of Semiconductor Devices. IEEE Press, Piscataway (2000)

    Google Scholar 

  19. Goano, M.: Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral. ACM Trans. Math. Softw. 21(3), 221–232 (1995)

    Article  MATH  Google Scholar 

  20. Goano, M.: Series expansion of the Fermi-Dirac integral \({\mathcal{F}}_{j}(x)\) over the entire domain of real f and x. Solid-State Electron. 36(2), 217–221 (1993)

    Article  Google Scholar 

  21. Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  Google Scholar 

  22. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, New York (1984)

    Google Scholar 

  23. Ridley, B.: Quantum Processes in Semiconductors (2nd ed.). Clarendon Press, Oxford (1988)

    Google Scholar 

  24. Ashcroft, N., Mermin, N.: Solid State Physics. Harcourt Brace, New York (1976)

    Google Scholar 

  25. Yu, P., Cardona, M.: Fundamentals of Semiconductors: Physics and Materials (3rd ed.). Springer, New York (2005)

    Book  Google Scholar 

  26. Cohen, M., Bergstresser, T.: Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zincblende structures. Phys. Rev. 141(2), 789–796 (1966)

    Article  Google Scholar 

  27. Harrison, P.: Quantum Wells, Wires, and Dots. Wiley, New York (2000)

    Google Scholar 

  28. Fischetti, M., Laux, S.: Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38(14), 9721–9745 (1988)

    Article  Google Scholar 

  29. Saraniti, M., Hu, Y., Goodnick, S., Wigger, S.: Overshoot velocity in ultra-broadband THz studies in GaAs and InP. Physica B 314(1), 162–165 (2002)

    Article  Google Scholar 

  30. Sotoodeh, M., Khalid, A., Rezazadeh, A.: Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys. 87(6), 2890–2900 (2000)

    Article  Google Scholar 

  31. Shiktorov, P., Gruz̆inskis, V., Starikov, E., Reggiani, L., Varani, L.: Noise temperature of n + nn + GaAs structures. Phys. Rev. B 54(12), 8821–8832 (1996)

    Article  Google Scholar 

  32. Silvester, P., Ferrari, R.: Finite Elements for Electrical Engineers (3rd ed.). Cambridge University Press, Cambridge (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Grupen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grupen, M. Energy transport model with full band structure for GaAs electronic devices. J Comput Electron 10, 271–290 (2011). https://doi.org/10.1007/s10825-011-0364-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-011-0364-9

Keywords

Navigation