Skip to main content
Log in

Analytical modeling and simulation of MEMS piezoresistive pressure sensors with a square silicon carbide diaphragm as the primary sensing element under different loading conditions

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Although silicon is the preferred choice for microelectromechanical systems (MEMS) piezoresistive pressure sensors, such devices are not preferred for application in harsh environmental conditions due to the exponential increase in leakage current with temperature. To alleviate such shortcomings of silicon-based pressure sensors in extreme conditions including elevated temperature and intense vibration, this study strives to shift focus from core complementary metal–oxide–semiconductor (CMOS) materials to silicon carbide. In this work, we adopt an analytical and simulation approach to model and analyze various characteristics of such silicon carbide piezoresistive sensors and determine an optimal design. A square diaphragm is modeled using the analytical expressions for a thin plate in combination with small-deflection theory, providing quick insight for estimation of critical parameters and thus the behavior of the pressure sensor. Both clamped and freely supported edge conditions of the diaphragm are explored. Although many studies and discussions are available on the rigidly supported loading condition, the freely supported edge condition for a square diaphragm has received little attention. The deflection, stress, strain, and sensitivity of the square diaphragm under both loading conditions are reported herein then compared to understand which of the two loading conditions results in more significant outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bae, B., et al.: Design optimization of a piezoresistive pressure sensor considering the output signal-to-noise ratio. J. Micromech. Microeng. 14, 1597–1607 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bao, M.: Analysis and Design Principles of MEMS Devices. Elsevier, Amsterdam (2005)

    Google Scholar 

  3. Beeby, S.P., Stuttle, M., White, N.M.: Design and fabrication of low cost microengineered silicon pressure sensor with linearized output. IEEE Proc. Sci. Meas. Technol. 147(3), 127–130 (2000)

    Article  Google Scholar 

  4. Jindal, S.K., Raghuwanshi, S.K.: A complete analytical model for circular diaphragm pressure sensor with clamped edge. J. Circuit Syst. 1(2), 19–27 (2013)

    Google Scholar 

  5. Jindal, S.K., Raghuwanshi, S.K.: A complete analytical model for circular diaphragm pressure sensor with freely supported edge. Microsyst. Technol. 21(5), 1073–1079 (2015)

    Article  Google Scholar 

  6. Jindal, S.K., Mahajan, A., Raghuwanshi, S.K.: A complete analytical model for clamped edge circular diaphragm non-touch and touch mode capacitive pressure sensor. Microsyst. Technol. 22(5), 1143–1150 (2015)

    Article  Google Scholar 

  7. Kumar, S.S., Pant, B.D.: Design of piezoresistive MEMS absolute pressure sensor. In: Proceedings of the SPIE 8549 Kumar SS, Pant BD (2013) Effect of Temperature on Etch Rate and Undercutting of (100) Silicon Using 25% TMAH. In: Proceedings of the International Conference on Emerging Technologies Micro to Nano (ETMN), Goa (2012)

  8. Kumar, S.S., Pant, B.D.: Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: a focused review. Microsyst. Technol. 20, 1213–1247 (2014)

    Article  Google Scholar 

  9. Kumar, S.S., Pant, B.D.: Polysilicon thin film piezoresistive pressure microsensor: design, fabrication and characterization. Microsyst. Technol. (2014). https://doi.org/10.1007/s00542-014-2318-1

    Article  Google Scholar 

  10. Kumar, S.S., Ojha, A.K., Nambisan, R., Sharma, A.K., Pant, B.D.: Design and simulation of MEMS silicon piezoresistive pressure sensor for barometric applications. In: Proceedings of the ARTCom&ARTEE PEIE&itSIP and PCIE, pp 339–345. Elsevier (2013). ISBN978-81-910691-8-3

  11. Kumar, S.S., Ojha, A.K., Pant, B.D.: Experimental evaluation of sensitivity and non-linearity in polysilicon piezoresistive pressure sensors with different diaphragm sizes. Microsyst. Technol. (2014). https://doi.org/10.1007/s00542-014-2369-3

    Article  Google Scholar 

  12. Khakpour, R. et al.: Analytical comparison for square, rectangular and circular diaphragms in MEMS applications. In: International Conference on Electronic Devices. Systems and Applications, pp. 297–299 (2010)

  13. Li, S., Zhang, Z., Tang, J., Ding, D.: A novel signal conditioning circuit for piezoresistive pressure sensor. Unifying Electr. Eng. Electron. Eng. 238, 1707–1713 (2014). https://doi.org/10.1007/978-1-4614-4981-2_187

    Article  Google Scholar 

  14. Li, C., Cordovilla, F., Jagdheesh, R., Ocaña, J.L.: Design and optimization of a novel structural MEMS piezoresistive pressure sensor. Microsyst. Technol. (2016). https://doi.org/10.1007/s00542-016-3187-6

    Article  Google Scholar 

  15. Lin, L., Chu, H.-C., Lu, Y.-W.: A simulation program for the sensitivity and linearity of piezoresistive pressure sensors. J. Microelectromech. Syst. 8, 514–522 (1999). https://doi.org/10.1109/84.809067

    Article  Google Scholar 

  16. Santosh Kumar, S., Pant, B.D.: Polysilicon thin film piezoresistive pressure microsensor: design, fabrication and characterisation. Microsyst. Technol. 21, 1949–1958 (2015)

    Article  Google Scholar 

  17. Sharma, A., Mukhiya, R., Kumar, S.S., Pant, B.D.: Design and simulation of bulk micromachined accelerometer for avionics application. VLSI Des. Test 382, 94–99 (2013). https://doi.org/10.1007/978-3-642-42024-5_12

    Article  Google Scholar 

  18. Song, J.W., Lee, J.-S., An, J.-E., Park, C.G.: Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules. Rev. Sci. Instrum. 86, 65003 (2015). https://doi.org/10.1063/1.4921862

    Article  Google Scholar 

  19. Smith, C.S.: Piezoresistive effect in germanium and silicon. Phys. Rev. 94, 42–49 (1954)

    Article  Google Scholar 

  20. Timoshenko, S.P., Woinowsky-Kreiger, S.: Theory of Plates and Shells, 2nd edn. McGraw Hill, New York (1959)

    Google Scholar 

  21. Wang, X., Li, B., Lee, S., Sun, Y., Roman, H.T., Chin, K., Farmer, K.R.: A new method to design pressure sensor diaphragm. NSTI Nanotechnol. 1, 324–327 (2004)

    Article  Google Scholar 

  22. Werner, M., Gluche, P., Adamschik, M., Kohn, E., Fecht, H.J.: Review of diamond based piezoresistive sensors. Proc. IEEE Int. Symp. Ind. Electron. 1, 147–152 (1998)

    Google Scholar 

  23. Zhang, Y., Wise, K.D.: Performance of non-planar silicon diaphragms under large deflections. J. Microelectromech. Syst. 3, 59–68 (1994)

    Article  Google Scholar 

  24. Zhang, Y.-H., Yang, C., Zhang, Z.-H., Lin, Z.H.-W., Liu, L.-T., Ren, T.-L.: A novel pressure microsensor with 30-μm-thick diaphragm and meander-shaped piezoresistors partially distributed on high-stress bulk silicon region. IEEE Sens. J. 7, 1742–1748 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Jindal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, S.K., Magam, S.P. & Shaklya, M. Analytical modeling and simulation of MEMS piezoresistive pressure sensors with a square silicon carbide diaphragm as the primary sensing element under different loading conditions. J Comput Electron 17, 1780–1789 (2018). https://doi.org/10.1007/s10825-018-1223-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1223-8

Keywords

Navigation