Journal of Computational Electronics

, Volume 16, Issue 4, pp 1236–1256 | Cite as

A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device

  • Milan Pešić
  • Christopher Künneth
  • Michael Hoffmann
  • Halid Mulaosmanovic
  • Stefan Müller
  • Evelyn T. Breyer
  • Uwe Schroeder
  • Alfred Kersch
  • Thomas Mikolajick
  • Stefan Slesazeck
S.I.: Computational Electronics of Emerging Memory Elements


The discovery of ferroelectric properties of binary oxides revitalized the interest in ferroelectrics and bridged the scaling gap between the state-of-the-art semiconductor technology and ferroelectric memories. However, before hitting the markets, the origin of ferroelectricity and in-depth studies of device characteristics are needed. Establishing a correlation between the performance of the device and underlying physical mechanisms is the first step toward understanding the device and engineering guidelines for a novel, superior device. Therefore, in this paper a holistic modeling approaches which lead to a better understanding of ferroelectric memories based on hafnium and zirconium oxide is addressed. Starting from describing the stabilization of the ferroelectric phase within the binary oxides via physical modeling the physical mechanisms of the ferroelectric devices are reviewed. Besides, limitations and modeling of the multilevel operation and switching kinetics of ultimately scaled devices as well as the necessity for Landau–Khalatnikov approach are discussed. Furthermore, a device-level model of ferroelectric memory devices that can be used to study the array implementation and their operational schemes are addressed. Finally, a circuit model of the ferroelectric memory device is presented and potential further applications of ferroelectric devices are outlined.


Modeling FRAM FeFET Wake-up Ferroelectric \(\hbox {HfO}_{2}\) Ferroelectric memory 


  1. 1.
    Waser, R.: Nanoelectronics and Information Technology. Wiley, New York (2012)Google Scholar
  2. 2.
    Mitsui, T., et al.: Ferroelectrics and antiferroelectrics. In: Martienssen, W., Warlimont, H. (eds.) Springer Handbook of Condensed Matter and Materials Data, pp. 903–938. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Mikolajick, T., et al.: Ferroelectric nonvolatile memories. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. (eds.) Encyclopedia of Materials Science and Technology, pp. 1–5. Elsevier, Oxford (2002)Google Scholar
  4. 4.
    Buck, D.A., et al.: Ferroelectrics for Digital Information Storage and Switching, Master Thesis. MIT Digital Computer Laboratory (1952)Google Scholar
  5. 5.
    Merz, J., et al.: Ferroelectric storage devices. Bell Lab Records 33, 335–342 (1955)Google Scholar
  6. 6.
    Anderson, J.R., et al.: Feroelectric materials as storage elements for digital computers and switching systems. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 71, 395–401 (1953)Google Scholar
  7. 7.
    Bondurant, D., et al.: Ferroelectronic RAM memory family for critical data storage. Ferroelectrics 112, 273–282 (1990)CrossRefGoogle Scholar
  8. 8.
    Mikolajick, T., et al.: FeRAM technology for high density applications. Microelectron. Reliab. 41, 947–950 (2001)CrossRefGoogle Scholar
  9. 9.
    Pinnow, C.-U., et al.: Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13–K19 (2004)CrossRefGoogle Scholar
  10. 10.
    Koo, J.-M., et al.: Fabrication of 3D trench PZT capacitors for 256 Mbit FRAM device application. IEDM Techn. Digest. pp. 340–343 (2005)Google Scholar
  11. 11.
    Yeh, C.-P., et al.: Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM. AIP Adv. 6(3), 035128 (2016)CrossRefGoogle Scholar
  12. 12.
    McAdams, H.P., et al.: A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid-State Circuits 39, 667–677 (2004)CrossRefGoogle Scholar
  13. 13.
    Ross, I.M., et al.: Semiconductive translating device. U.S. Patent 2791760 A (1957)Google Scholar
  14. 14.
    Moll, J.L., et al.: A new solid state memory resistor. IEEE Trans. Electron Devices 10, 338 (1963)CrossRefGoogle Scholar
  15. 15.
    Ma, T.P., et al.: Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett. 23, 386–388 (2002)CrossRefGoogle Scholar
  16. 16.
    Sakai, S., et al.: Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004)CrossRefGoogle Scholar
  17. 17.
    Boescke, T.S., et al.: Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011)CrossRefGoogle Scholar
  18. 18.
    Gutowski, M., et al.: Thermodynamic stability of high-K dielectric metal oxides ZrO\(_{2}\) and HfO\(_{2}\) in contact with Si and SiO\(_{2}\). MRS Proc. (2002). doi: 10.1557/PROC-716-B3.2 Google Scholar
  19. 19.
    Mikolajick, T., et al.: Doped Hafnium oxide—an enabler for ferroelectric field effect transistors. Adv. Sci. Technol. 95, 136–145 (2014)CrossRefGoogle Scholar
  20. 20.
    Müller, J., et al.: Ferroelectric Hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. IEDM Digest of Technical Papers, pp. 10.8.1–10.8.4 (2013)Google Scholar
  21. 21.
    Trentzsch, M., et al.: A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 11–5. IEEE (December 2016)Google Scholar
  22. 22.
    Pešić, M., et al.: Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO\(_{2}\). Adv. Funct. Mater. 26(41), 7486–7494 (2016)CrossRefGoogle Scholar
  23. 23.
    Pesic, M., et al.: How to make DRAM non-volatile? Anti-ferroelectrics: a new paradigm for universal memories. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 11–6. IEEE (2016)Google Scholar
  24. 24.
    Kisi, E.H., et al.: Crystal structure of orthorhombic zirconia in partially stabilized zirconia. J. Am. Ceram. Soc. 72(9), 1757–1760 (1989)CrossRefGoogle Scholar
  25. 25.
    Lowther, J., et al.: Relative stability of ZrO\(_{2}\) and HfO\(_{2}\) structural phases. Phys. Rev. B 60(21), 14485–14488 (1999)CrossRefGoogle Scholar
  26. 26.
    Sang, X., et al.: On the structural origins of ferroelectricity in HfO\(_{2}\) thin films. Appl. Phys. Lett. 106(16), 162905 (2015)CrossRefGoogle Scholar
  27. 27.
    Polakowski, P., et al.: Ferroelectric deep trench capacitors based on Al: HfO\(_{2}\) for 3D nonvolatile memory applications. In: 2014 IEEE 6th International Memory Workshop (IMW), pp. 1–4. IEEE (May 2014)Google Scholar
  28. 28.
    Martin, D., et al.: Ferroelectricity in Si-doped HfO\(_{2}\) revealed: a binary lead-free ferroelectric. Adv. Mater. 26(48), 8198–8202 (2014)CrossRefGoogle Scholar
  29. 29.
    Materlik, R., et al.: The origin of ferroelectricity in \(\text{ Hf }_{1-x}\text{ Zr }_{x}\text{ O }_{2}\): a computational investigation and a surface energy model. J. Appl. Phys. 117(13), 134109 (2015)CrossRefGoogle Scholar
  30. 30.
    Reyes-Lillo, S.E., et al.: Antiferroelectricity in thin-film ZrO\(_{2}\) from first principles. Phys. Rev. B 90(14), 140103 (2014)CrossRefGoogle Scholar
  31. 31.
    Huan, T.D., et al.: Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90(6), 064111 (2014)CrossRefGoogle Scholar
  32. 32.
    Barabash, S.V., et al.: Ferroelectric switching pathways and energetics in (Hf, Zr) O\(_{2}\). ECS Trans. 75(32), 107–121 (2017)CrossRefGoogle Scholar
  33. 33.
    Fischer, D., et al.: Stabilization of the high-k tetragonal phase in HfO\(_{2}\): the influence of dopants and temperature from ab initio simulations. J. Appl. Phys. 104(8), 084104 (2008)CrossRefGoogle Scholar
  34. 34.
    Lee, C.K., et al.: First-principles study on doping and phase stability of HfO\(_{2}\). Phys. Rev. B 78(1), 012102 (2008)CrossRefGoogle Scholar
  35. 35.
    Chen, G.H., et al.: Effects of Y doping on the structural stability and defect properties of cubic HfO\(_{2}\). J. Appl. Phys. 104(7), 074101 (2008)CrossRefGoogle Scholar
  36. 36.
    Hou, Z.F., et al.: Energetics and electronic structure of aluminum point defects in HfO\(_{2}\): a first-principles study. J. Appl. Phys. 106(1), 014104 (2009)CrossRefGoogle Scholar
  37. 37.
    Zhang, W., et al.: Interplay between gadolinium dopants and oxygen vacancies in HfO\(_{2}\): a density functional theory plus Hubbard U investigation. J. Appl. Phys. 115(12), 124104 (2014)CrossRefGoogle Scholar
  38. 38.
    Umezawa, N., et al.: Effects of barium incorporation into HfO\(_{2}\) gate dielectrics on reduction in charged defects: first-principles study. Appl. Phys. Lett. 94(2), 022903 (2009)CrossRefGoogle Scholar
  39. 39.
    Broqvist, P., et al.: Oxygen vacancy in monoclinic HfO\(_{2}\): a consistent interpretation of trap assisted conduction, direct electron injection, and optical absorption experiments. Appl. Phys. Lett. 89(26), 262904 (2006)CrossRefGoogle Scholar
  40. 40.
    Hoffmann, M., et al.: Ferroelectric phase transitions in nanoscale HfO\(_{2}\) films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154–164 (2015)CrossRefGoogle Scholar
  41. 41.
    Müller, J., et al.: Ferroelectricity in simple binary ZrO\(_{2}\) and HfO\(_{2}\). Nano Lett. 12(8), 4318–4323 (2012)CrossRefGoogle Scholar
  42. 42.
    Batra, R., et al.: Factors favoring ferroelectricity in hafnia: a first principles computational study. J. Phys. Chem. C 121, 4139–4145 (2017)CrossRefGoogle Scholar
  43. 43.
    Luo, X., et al.: Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys. Rev. B 80(13), 134119 (2009)CrossRefGoogle Scholar
  44. 44.
    Kumar, A., et al.: First-principles free energies and Ginzburg–Landau theory of domains and ferroelectric phase transitions in BaTiO\(_{3}\). Phys. Rev. B 82(5), 054117 (2010)CrossRefGoogle Scholar
  45. 45.
    Künneth, C., et al.: Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf\(_{1-x}\)Zr\(_{x}\)O\(_{2}\) grains. J. Appl. Phys. 121(20), 205304 (2017)Google Scholar
  46. 46.
    Yurchuk, E., et al.: Charge-trapping phenomena in HfO\(_{2}\)-Based FeFET-type nonvolatile memories. IEEE Trans. Electron Devices 63(9), 3501–3507 (2016)CrossRefGoogle Scholar
  47. 47.
    Menou, N., et al.: Polarization fatigue in PbZr\(_{0.45}\)Ti\(_{0.55}\)O\(_{3}\)-based capacitors studied from high resolution synchrotron X-ray diffraction. J. Appl. Phys. 97(6), 1–7 (2005)CrossRefGoogle Scholar
  48. 48.
    Zhou, D., et al.: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103(19), 192904 (2013)CrossRefGoogle Scholar
  49. 49.
    Lou, X.J., et al.: Polarization fatigue in ferroelectric thin films and related materials. J. Appl. Phys. 105(2), 024101 (2009)CrossRefGoogle Scholar
  50. 50.
    Shur, V.Y., et al.: Analysis of the switching data in inhomogeneous ferroelectrics. Ferroelectrics 349(1), 163–170 (2007)CrossRefGoogle Scholar
  51. 51.
    Morozov, M.I., et al.: Hardening-softening transition in Fe-doped Pb(Zr, Ti)O\(_{3}\) ceramics and evolution of the third harmonic of the polarization response. J. Appl. Phys. 104(3), 034107 (2008)CrossRefGoogle Scholar
  52. 52.
    Warren, W.L., et al.: Polarization suppression in Pb(Zr, Ti)O\(_{3}\) thin films. J. Appl. Phys. 6695, 6695–6702 (1995)CrossRefGoogle Scholar
  53. 53.
    Colla, E.L., et al.: Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr, Ti)O\(_{3}\) thin film capacitors with Pt electrodes. Appl. Phys. Lett. 72(21), 2763–2765 (1998)CrossRefGoogle Scholar
  54. 54.
    Tagantsev, A.K., et al.: Identification of passive layer in ferroelectric thin films from their switching parameters. J. Appl. Phys. 78(4), 2623–2630 (1995)CrossRefGoogle Scholar
  55. 55.
    Pešić, M., et al.: Physical mechanisms behind the field-cycling behavior of HfO\(_{2}\)-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601–4612 (2016)CrossRefGoogle Scholar
  56. 56.
    Schenk, T., et al.: Electric field cycling behavior of ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 6(22), 19744–19751 (2014)CrossRefGoogle Scholar
  57. 57.
    Schenk, T., et al.: About the deformation of ferroelectric hystereses. Appl. Phys. Rev. 1(4), 041103 (2014)CrossRefGoogle Scholar
  58. 58.
    Grimley, E.D., et al.: Structural changes underlying field-cycling phenomena in ferroelectric HfO\(_{2}\) thin films. Adv. Electron. Mater. 2(9), 1600173 (2016)Google Scholar
  59. 59.
    Pesic, M., et al.: Root cause of degradation in novel HfO\(_2\)-based Ferroelectric Memories. In: 2016 IEEE International Reliability Physics Symposium, pp. MY-3-1-MY-3-5. IEEE (2016)Google Scholar
  60. 60.
    Pešić, M., et al.: Conduction barrier offset engineering for DRAM capacitor scaling. Solid-State Electron. 115, 133–139 (2016)CrossRefGoogle Scholar
  61. 61.
    Park, M.H., et al.: Thin Hf\(_{x}\)Zr\(_{1-x}\)O\(_{2}\) films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4(16), 1400610 (2014)Google Scholar
  62. 62.
    Schenk, T., et al.: Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7(36), 20224–20233 (2015)CrossRefGoogle Scholar
  63. 63.
    Mulaosmanovic, H., et al.: Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 26–8. IEEE (December 2015)Google Scholar
  64. 64.
    Mulaosmanovic, H., et al.: Switching kinetics in nanoscale hafnium oxide based ferroelectric field effect transistors. ACS Appl. Mater. Interfaces 9, 3792–3798 (2017)CrossRefGoogle Scholar
  65. 65.
    Pešić, M., et al.: Impact of charge trapping on the ferroelectric switching behavior of doped HfO\(_{2}\). Physica Status Solidi (A) 213, 270–273 (2015)Google Scholar
  66. 66.
    Sentaurus Device TCAD Manual 2016Google Scholar
  67. 67.
    Dragosits, K., et al.: Transient simulation of ferroelectric hysteresis. In: Proceedings of 3rd International Conference on Modeling and Simulation of Microsystems, pp. 433–436 (2000)Google Scholar
  68. 68.
    Nasyrov, K.A., et al.: Charge transport in dielectrics via tunneling between traps. J. Appl. Phys. 109(9), 1–6 (2011)CrossRefGoogle Scholar
  69. 69.
    Pirrotta, O., et al.: Leakage current through the poly-crystalline HfO\(_{2}\): trap densities at grains and grain boundaries. J. Appl. Phys. 114(13), 1–6 (2013)CrossRefGoogle Scholar
  70. 70.
    Larcher, L., et al.: Multi-scale modeling of HfOx-ReRAM operation and variability RRAMs? State of the art. EMRS (2015)Google Scholar
  71. 71.
    Pesic, M.: Gate Stack Engineering for Emerging Polarization based Non-volatile Memories. BoD–Books on Demand, 14 Jul 2017Google Scholar
  72. 72.
    Capron, N., et al.: Migration of oxygen vacancy in HfO\(_{2}\) and across the HfO\(_{2}\)/SiO\(_{2}\) interface: a first-principles investigation. Appl. Phys. Lett. 91(19), 192905 (2007)CrossRefGoogle Scholar
  73. 73.
    McPherson, J., et al.: Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82(13), 2121–2123 (2003)CrossRefGoogle Scholar
  74. 74.
    Li, C., et al.: Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 8(11), 3571–3579 (2015)CrossRefGoogle Scholar
  75. 75.
    Starschich, S., et al.: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl. Phys. Lett. 108(3), 032903 (2016)CrossRefGoogle Scholar
  76. 76.
    Larcher, L., et al.: Microscopic understanding and modeling of HfO\(_{2}\) RRAM device physics. In: 2012 IEEE International Electron Devices Meeting (IEDM), pp. 20–21. IEEE (December 2012)Google Scholar
  77. 77.
    Tran, X.A., et al.: Self-selection unipolar HfO\(_{x}\)-based RRAM. IEEE Trans. Electron Devices 60(1), 391–395 (2013)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Clima, S., et al.: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO\(_{2}\): a first principles insight. Appl. Phys. Lett. 104(9), 092906 (2014)CrossRefGoogle Scholar
  79. 79.
    Masuduzzaman, M., et al.: Hot atom damage (HAD) limited TDDB lifetime of ferroelectric memories. Tech. Dig. Int. Electron Devices Meet. IEDM, No. Fig 9, pp. 566–569 (2013)Google Scholar
  80. 80.
    Masuduzzaman, M., et al.: Observation and control of hot atom damage in ferroelectric devices. IEEE Trans. Electron Devices 61(10), 3490–3498 (2014)CrossRefGoogle Scholar
  81. 81.
    Yurchuk, E., et al.: Origin of the endurance degradation in the novel HfO\(_{2}\)-based 1T ferroelectric non-volatile memories. In: 2014 IEEE International Reliability Physics Symposium, pp. 2E-5. IEEE (June 2014)Google Scholar
  82. 82.
    Kupke, S., et al.: Dynamic off-state TDDB of ultra short channel HKMG nFETS and its implications on CMOS logic reliability. In: 2014 IEEE International Reliability Physics Symposium, pp. 5B-1. IEEE (June 2014)Google Scholar
  83. 83.
    Mueller, S., et al.: Development of HfO\(_{2}\)-based ferroelectric memories for future CMOS technology nodes.
  84. 84.
    Orihara, H., et al.: A theory of DE hysteresis loop based on the Avrami model. J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994)CrossRefGoogle Scholar
  85. 85.
    So, Y.W., et al.: Polarization switching kinetics of epitaxial Pb (Zr 0.4 Ti 0.6) O\(_{3}\) thin films. Appl. Phys. Lett. 86(9), 092905 (2005)CrossRefGoogle Scholar
  86. 86.
    Tagantsev, A.K., et al.: Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66(21), 214109 (2002)CrossRefGoogle Scholar
  87. 87.
    Du, X., et al.: Frequency spectra of fatigue of PZT and other ferroelectric thin films. In: MRS Proceedings. Vol. 493, p. 311. Cambridge University Press (1997)Google Scholar
  88. 88.
    Merz, W.J., et al.: Domain formation and domain wall motions in ferroelectric BaTiO\(_{3}\) single crystals. Phys. Rev. 95(3), 690 (1954)CrossRefGoogle Scholar
  89. 89.
    Roelofs, A., et al.: Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81(27), 5231–5233 (2002)CrossRefGoogle Scholar
  90. 90.
    Rabe, K., Ahn, C.H., Triscone, J.-M. (Eds.): Physics of ferroelectrics: a modern perspective. Topics Appl. Phys. 105, 69–116 (2007)Google Scholar
  91. 91.
    Devonshire, A.F., et al.: XCVI. Theory of barium titanate. Philos. Mag. 40, 1040 (1949)CrossRefGoogle Scholar
  92. 92.
    Landau, L., Khalatnikov, I.: On the anomalous absorption of sound near a second order phase transition point. Dokl. Akad. Nauk SSSR 96, 469–472 (1954)MATHGoogle Scholar
  93. 93.
    Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Exp. Theor. Fiz. 20, 1064 (1950)Google Scholar
  94. 94.
    Soh, A.K., et al.: Phase field simulations of hysteresis and butterfly loops in ferroelectrics subjected to electro-mechanical coupled loading. J. Am. Ceram. Soc. 89, 652 (2006)CrossRefGoogle Scholar
  95. 95.
    Merz, W.J., et al.: Domain formation and domain wall motions in ferroelectric BaTiO\(_{3}\) single crystals. Phys. Rev. 95, 690 (1954)CrossRefGoogle Scholar
  96. 96.
    Hoffmann, M., et al.: Direct obeservation of negative capacitance in polycrystalline ferroelectric HfO\(_{2}\). Adv. Funct. Mater. 26, 8643 (2016)CrossRefGoogle Scholar
  97. 97.
    Hoffmann, M., et al.: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015)CrossRefGoogle Scholar
  98. 98.
    Schenk, T., et al.: Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224–20233 (2015)CrossRefGoogle Scholar
  99. 99.
    Salahuddin, S., et al.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008)CrossRefGoogle Scholar
  100. 100.
    Lee, M.H., et al.: Physical thickness 1.x nm ferroelectric HfZrO\(_{x}\) negative capacitance FETs. IEEE Tech. Dig. IEDM, pp. 306–309 (2016)Google Scholar
  101. 101.
    Duarte, J.P., et al.: Compact models of negative-capacitance FinFETs: lumped and distributed charge models. IEEE Tech. Dig. IEDM 2016, 754–757 (2016)Google Scholar
  102. 102.
    Charge storage ferroelectric memory hybrid and erase scheme.
  103. 103.
    Mueller, S., et al.: Correlation between the macroscopic ferroelectric material properties of Si: HfO\(_{2}\) and the statistics of 28 nm FeFET memory arrays. Ferroelectrics 497(1), 42–51 (2016)MathSciNetCrossRefGoogle Scholar
  104. 104.
    Mayergoyz, I., et al.: Mathematical models of hysteresis. IEEE Trans. Magn. 22(5), 603–608 (1986)CrossRefMATHGoogle Scholar
  105. 105.
    Miller, S.L., et al.: Device modeling of ferroelectric capacitors. J. Appl. Phys. 68(12), 6463–6471 (1990)CrossRefGoogle Scholar
  106. 106.
    Jiang, B., et al.: Computationally efficient ferroelectric capacitor model for circuit simulation. In: 1997 Symposium on VLSI Technology. Digest of Technical Papers, pp. 141–142. IEEE (June 1997)Google Scholar
  107. 107.
    Kuhn, C., et al.: A dynamic ferroelectric capacitance model for circuit simulators. In: Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics. ISAF, vol. 2, pp. 695–698. IEEE (2000)Google Scholar
  108. 108.
    Bartic, A.T., et al.: Preisach model for the simulation of ferroelectric capacitors. J. Appl. Phys. 89(6), 3420–3425 (2001)CrossRefGoogle Scholar
  109. 109.
    Wei, C.G., et al.: A ferroelectric capacitor compact model for circuit simulation. In: Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology, Vol. 1, pp. 738–741. IEEE (October 2004)Google Scholar
  110. 110.
    Rep, D.B.A., et al.: Equivalent-circuit modeling of ferroelectric switching devices. J. Appl. Phys. 85(11), 7923–7930 (1999)CrossRefGoogle Scholar
  111. 111.
    Dunn, D.E., et al.: A ferroelectric capacitor macromodel and parameterization algorithm for SPICE simulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41(3), 360–369 (1994)CrossRefGoogle Scholar
  112. 112.
    Lim, K., et al.: A semi-empirical cad model of ferroelectric capacitor for circuit simulation. Integr. Ferroelectr. 17(1–4), 97–104 (1997)CrossRefGoogle Scholar
  113. 113.
    Kulkarni, A.K., et al.: A circuit model for a thin film ferroelectric memory device. Ferroelectrics 116(1), 95–106 (1991)CrossRefGoogle Scholar
  114. 114.
    Clark, L.T., et al.: Measurement and simulation of partial switching in ferroelectric PZT thin-films. Integr. Ferroelectr. 3(4), 309–320 (1993)CrossRefGoogle Scholar
  115. 115.
    Sheikholeslami, A., et al.: A pulse-based, parallel-element macromodel for ferroelectric capacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(4), 784–791 (2000)CrossRefGoogle Scholar
  116. 116.
    Tamura, T., et al.: A new circuit simulation model of ferroelectric capacitors. Jpn. J. Appl. Phys. 41(4S), 2654 (2002)CrossRefGoogle Scholar
  117. 117.
    Andò, B., et al.: Electric field detectors in a coupled ring configuration: Preliminary results. In: Smart Materials, Nano-and Micro-Smart Systems, pp. 641702–641702. International Society for Optics and Photonics (December 2006)Google Scholar
  118. 118.
    Aziz, A., et al.: Physics-based circuit-compatible SPICE model for ferroelectric transistors. IEEE Electron Device Lett. 37(6), 805–808 (2016)Google Scholar
  119. 119.
    Sivasubramanian, S., et al.: Equivalent circuit and simulations for the Landau–Khalatnikov model of ferroelectric hysteresis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(8), 950–957 (2003)CrossRefGoogle Scholar
  120. 120.
    Song, S.J., et al.: Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors. Sci. Rep. 6, 20825 (2016)CrossRefGoogle Scholar
  121. 121.
    Brennan, C.J., et al.: A physical model for the electrical hysteresis of thin-film ferroelectric capacitors. Ferroelectrics 132(1), 245–257 (1992)CrossRefGoogle Scholar
  122. 122.
    Kim, S., et al.: Highly compact and accurate circuit-level macro modeling of gate-all-around charge-trap flash memory. JJAP 56, 014302 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Milan Pešić
    • 1
  • Christopher Künneth
    • 2
  • Michael Hoffmann
    • 1
  • Halid Mulaosmanovic
    • 1
  • Stefan Müller
    • 3
  • Evelyn T. Breyer
    • 1
  • Uwe Schroeder
    • 1
  • Alfred Kersch
    • 2
  • Thomas Mikolajick
    • 1
    • 4
  • Stefan Slesazeck
    • 1
  1. 1.NaMLab gGmbHDresdenGermany
  2. 2.Department of Applied Sciences and MechatronicsMunich University of Applied SciencesMunichGermany
  3. 3.Ferroelectric Memory GmbHDresdenGermany
  4. 4.Chair of Nanoelectronic Materials, Institute of Semiconductors and MicrosystemsTU DresdenDresdenGermany

Personalised recommendations