Skip to main content
Log in

A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device

  • S.I.: Computational Electronics of Emerging Memory Elements
  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The discovery of ferroelectric properties of binary oxides revitalized the interest in ferroelectrics and bridged the scaling gap between the state-of-the-art semiconductor technology and ferroelectric memories. However, before hitting the markets, the origin of ferroelectricity and in-depth studies of device characteristics are needed. Establishing a correlation between the performance of the device and underlying physical mechanisms is the first step toward understanding the device and engineering guidelines for a novel, superior device. Therefore, in this paper a holistic modeling approaches which lead to a better understanding of ferroelectric memories based on hafnium and zirconium oxide is addressed. Starting from describing the stabilization of the ferroelectric phase within the binary oxides via physical modeling the physical mechanisms of the ferroelectric devices are reviewed. Besides, limitations and modeling of the multilevel operation and switching kinetics of ultimately scaled devices as well as the necessity for Landau–Khalatnikov approach are discussed. Furthermore, a device-level model of ferroelectric memory devices that can be used to study the array implementation and their operational schemes are addressed. Finally, a circuit model of the ferroelectric memory device is presented and potential further applications of ferroelectric devices are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Waser, R.: Nanoelectronics and Information Technology. Wiley, New York (2012)

    Google Scholar 

  2. Mitsui, T., et al.: Ferroelectrics and antiferroelectrics. In: Martienssen, W., Warlimont, H. (eds.) Springer Handbook of Condensed Matter and Materials Data, pp. 903–938. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Mikolajick, T., et al.: Ferroelectric nonvolatile memories. In: Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. (eds.) Encyclopedia of Materials Science and Technology, pp. 1–5. Elsevier, Oxford (2002)

    Google Scholar 

  4. Buck, D.A., et al.: Ferroelectrics for Digital Information Storage and Switching, Master Thesis. MIT Digital Computer Laboratory (1952)

  5. Merz, J., et al.: Ferroelectric storage devices. Bell Lab Records 33, 335–342 (1955)

    Google Scholar 

  6. Anderson, J.R., et al.: Feroelectric materials as storage elements for digital computers and switching systems. Trans. Am. Inst. Electr. Eng. Part I Commun. Electron. 71, 395–401 (1953)

    Google Scholar 

  7. Bondurant, D., et al.: Ferroelectronic RAM memory family for critical data storage. Ferroelectrics 112, 273–282 (1990)

    Article  Google Scholar 

  8. Mikolajick, T., et al.: FeRAM technology for high density applications. Microelectron. Reliab. 41, 947–950 (2001)

    Article  Google Scholar 

  9. Pinnow, C.-U., et al.: Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13–K19 (2004)

    Article  Google Scholar 

  10. Koo, J.-M., et al.: Fabrication of 3D trench PZT capacitors for 256 Mbit FRAM device application. IEDM Techn. Digest. pp. 340–343 (2005)

  11. Yeh, C.-P., et al.: Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM. AIP Adv. 6(3), 035128 (2016)

    Article  Google Scholar 

  12. McAdams, H.P., et al.: A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid-State Circuits 39, 667–677 (2004)

    Article  Google Scholar 

  13. Ross, I.M., et al.: Semiconductive translating device. U.S. Patent 2791760 A (1957)

  14. Moll, J.L., et al.: A new solid state memory resistor. IEEE Trans. Electron Devices 10, 338 (1963)

    Article  Google Scholar 

  15. Ma, T.P., et al.: Why is nonvolatile ferroelectric memory field-effect transistor still elusive? IEEE Electron Device Lett. 23, 386–388 (2002)

    Article  Google Scholar 

  16. Sakai, S., et al.: Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004)

    Article  Google Scholar 

  17. Boescke, T.S., et al.: Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 99, 102903 (2011)

    Article  Google Scholar 

  18. Gutowski, M., et al.: Thermodynamic stability of high-K dielectric metal oxides ZrO\(_{2}\) and HfO\(_{2}\) in contact with Si and SiO\(_{2}\). MRS Proc. (2002). doi:10.1557/PROC-716-B3.2

    Google Scholar 

  19. Mikolajick, T., et al.: Doped Hafnium oxide—an enabler for ferroelectric field effect transistors. Adv. Sci. Technol. 95, 136–145 (2014)

    Article  Google Scholar 

  20. Müller, J., et al.: Ferroelectric Hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. IEDM Digest of Technical Papers, pp. 10.8.1–10.8.4 (2013)

  21. Trentzsch, M., et al.: A 28 nm HKMG super low power embedded NVM technology based on ferroelectric FETs. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 11–5. IEEE (December 2016)

  22. Pešić, M., et al.: Nonvolatile random access memory and energy storage based on antiferroelectric like hysteresis in ZrO\(_{2}\). Adv. Funct. Mater. 26(41), 7486–7494 (2016)

    Article  Google Scholar 

  23. Pesic, M., et al.: How to make DRAM non-volatile? Anti-ferroelectrics: a new paradigm for universal memories. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 11–6. IEEE (2016)

  24. Kisi, E.H., et al.: Crystal structure of orthorhombic zirconia in partially stabilized zirconia. J. Am. Ceram. Soc. 72(9), 1757–1760 (1989)

    Article  Google Scholar 

  25. Lowther, J., et al.: Relative stability of ZrO\(_{2}\) and HfO\(_{2}\) structural phases. Phys. Rev. B 60(21), 14485–14488 (1999)

    Article  Google Scholar 

  26. Sang, X., et al.: On the structural origins of ferroelectricity in HfO\(_{2}\) thin films. Appl. Phys. Lett. 106(16), 162905 (2015)

    Article  Google Scholar 

  27. Polakowski, P., et al.: Ferroelectric deep trench capacitors based on Al: HfO\(_{2}\) for 3D nonvolatile memory applications. In: 2014 IEEE 6th International Memory Workshop (IMW), pp. 1–4. IEEE (May 2014)

  28. Martin, D., et al.: Ferroelectricity in Si-doped HfO\(_{2}\) revealed: a binary lead-free ferroelectric. Adv. Mater. 26(48), 8198–8202 (2014)

    Article  Google Scholar 

  29. Materlik, R., et al.: The origin of ferroelectricity in \(\text{ Hf }_{1-x}\text{ Zr }_{x}\text{ O }_{2}\): a computational investigation and a surface energy model. J. Appl. Phys. 117(13), 134109 (2015)

    Article  Google Scholar 

  30. Reyes-Lillo, S.E., et al.: Antiferroelectricity in thin-film ZrO\(_{2}\) from first principles. Phys. Rev. B 90(14), 140103 (2014)

    Article  Google Scholar 

  31. Huan, T.D., et al.: Pathways towards ferroelectricity in hafnia. Phys. Rev. B 90(6), 064111 (2014)

    Article  Google Scholar 

  32. Barabash, S.V., et al.: Ferroelectric switching pathways and energetics in (Hf, Zr) O\(_{2}\). ECS Trans. 75(32), 107–121 (2017)

    Article  Google Scholar 

  33. Fischer, D., et al.: Stabilization of the high-k tetragonal phase in HfO\(_{2}\): the influence of dopants and temperature from ab initio simulations. J. Appl. Phys. 104(8), 084104 (2008)

    Article  Google Scholar 

  34. Lee, C.K., et al.: First-principles study on doping and phase stability of HfO\(_{2}\). Phys. Rev. B 78(1), 012102 (2008)

    Article  Google Scholar 

  35. Chen, G.H., et al.: Effects of Y doping on the structural stability and defect properties of cubic HfO\(_{2}\). J. Appl. Phys. 104(7), 074101 (2008)

    Article  Google Scholar 

  36. Hou, Z.F., et al.: Energetics and electronic structure of aluminum point defects in HfO\(_{2}\): a first-principles study. J. Appl. Phys. 106(1), 014104 (2009)

    Article  Google Scholar 

  37. Zhang, W., et al.: Interplay between gadolinium dopants and oxygen vacancies in HfO\(_{2}\): a density functional theory plus Hubbard U investigation. J. Appl. Phys. 115(12), 124104 (2014)

    Article  Google Scholar 

  38. Umezawa, N., et al.: Effects of barium incorporation into HfO\(_{2}\) gate dielectrics on reduction in charged defects: first-principles study. Appl. Phys. Lett. 94(2), 022903 (2009)

    Article  Google Scholar 

  39. Broqvist, P., et al.: Oxygen vacancy in monoclinic HfO\(_{2}\): a consistent interpretation of trap assisted conduction, direct electron injection, and optical absorption experiments. Appl. Phys. Lett. 89(26), 262904 (2006)

    Article  Google Scholar 

  40. Hoffmann, M., et al.: Ferroelectric phase transitions in nanoscale HfO\(_{2}\) films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy 18, 154–164 (2015)

    Article  Google Scholar 

  41. Müller, J., et al.: Ferroelectricity in simple binary ZrO\(_{2}\) and HfO\(_{2}\). Nano Lett. 12(8), 4318–4323 (2012)

    Article  Google Scholar 

  42. Batra, R., et al.: Factors favoring ferroelectricity in hafnia: a first principles computational study. J. Phys. Chem. C 121, 4139–4145 (2017)

    Article  Google Scholar 

  43. Luo, X., et al.: Monoclinic to tetragonal transformations in hafnia and zirconia: a combined calorimetric and density functional study. Phys. Rev. B 80(13), 134119 (2009)

    Article  Google Scholar 

  44. Kumar, A., et al.: First-principles free energies and Ginzburg–Landau theory of domains and ferroelectric phase transitions in BaTiO\(_{3}\). Phys. Rev. B 82(5), 054117 (2010)

    Article  Google Scholar 

  45. Künneth, C., et al.: Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf\(_{1-x}\)Zr\(_{x}\)O\(_{2}\) grains. J. Appl. Phys. 121(20), 205304 (2017)

  46. Yurchuk, E., et al.: Charge-trapping phenomena in HfO\(_{2}\)-Based FeFET-type nonvolatile memories. IEEE Trans. Electron Devices 63(9), 3501–3507 (2016)

    Article  Google Scholar 

  47. Menou, N., et al.: Polarization fatigue in PbZr\(_{0.45}\)Ti\(_{0.55}\)O\(_{3}\)-based capacitors studied from high resolution synchrotron X-ray diffraction. J. Appl. Phys. 97(6), 1–7 (2005)

    Article  Google Scholar 

  48. Zhou, D., et al.: Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103(19), 192904 (2013)

    Article  Google Scholar 

  49. Lou, X.J., et al.: Polarization fatigue in ferroelectric thin films and related materials. J. Appl. Phys. 105(2), 024101 (2009)

    Article  Google Scholar 

  50. Shur, V.Y., et al.: Analysis of the switching data in inhomogeneous ferroelectrics. Ferroelectrics 349(1), 163–170 (2007)

    Article  Google Scholar 

  51. Morozov, M.I., et al.: Hardening-softening transition in Fe-doped Pb(Zr, Ti)O\(_{3}\) ceramics and evolution of the third harmonic of the polarization response. J. Appl. Phys. 104(3), 034107 (2008)

    Article  Google Scholar 

  52. Warren, W.L., et al.: Polarization suppression in Pb(Zr, Ti)O\(_{3}\) thin films. J. Appl. Phys. 6695, 6695–6702 (1995)

    Article  Google Scholar 

  53. Colla, E.L., et al.: Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb(Zr, Ti)O\(_{3}\) thin film capacitors with Pt electrodes. Appl. Phys. Lett. 72(21), 2763–2765 (1998)

    Article  Google Scholar 

  54. Tagantsev, A.K., et al.: Identification of passive layer in ferroelectric thin films from their switching parameters. J. Appl. Phys. 78(4), 2623–2630 (1995)

    Article  Google Scholar 

  55. Pešić, M., et al.: Physical mechanisms behind the field-cycling behavior of HfO\(_{2}\)-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601–4612 (2016)

    Article  Google Scholar 

  56. Schenk, T., et al.: Electric field cycling behavior of ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 6(22), 19744–19751 (2014)

    Article  Google Scholar 

  57. Schenk, T., et al.: About the deformation of ferroelectric hystereses. Appl. Phys. Rev. 1(4), 041103 (2014)

    Article  Google Scholar 

  58. Grimley, E.D., et al.: Structural changes underlying field-cycling phenomena in ferroelectric HfO\(_{2}\) thin films. Adv. Electron. Mater. 2(9), 1600173 (2016)

  59. Pesic, M., et al.: Root cause of degradation in novel HfO\(_2\)-based Ferroelectric Memories. In: 2016 IEEE International Reliability Physics Symposium, pp. MY-3-1-MY-3-5. IEEE (2016)

  60. Pešić, M., et al.: Conduction barrier offset engineering for DRAM capacitor scaling. Solid-State Electron. 115, 133–139 (2016)

    Article  Google Scholar 

  61. Park, M.H., et al.: Thin Hf\(_{x}\)Zr\(_{1-x}\)O\(_{2}\) films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4(16), 1400610 (2014)

  62. Schenk, T., et al.: Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7(36), 20224–20233 (2015)

    Article  Google Scholar 

  63. Mulaosmanovic, H., et al.: Evidence of single domain switching in hafnium oxide based FeFETs: Enabler for multi-level FeFET memory cells. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 26–8. IEEE (December 2015)

  64. Mulaosmanovic, H., et al.: Switching kinetics in nanoscale hafnium oxide based ferroelectric field effect transistors. ACS Appl. Mater. Interfaces 9, 3792–3798 (2017)

    Article  Google Scholar 

  65. Pešić, M., et al.: Impact of charge trapping on the ferroelectric switching behavior of doped HfO\(_{2}\). Physica Status Solidi (A) 213, 270–273 (2015)

    Google Scholar 

  66. Sentaurus Device TCAD Manual 2016

  67. Dragosits, K., et al.: Transient simulation of ferroelectric hysteresis. In: Proceedings of 3rd International Conference on Modeling and Simulation of Microsystems, pp. 433–436 (2000)

  68. Nasyrov, K.A., et al.: Charge transport in dielectrics via tunneling between traps. J. Appl. Phys. 109(9), 1–6 (2011)

    Article  Google Scholar 

  69. Pirrotta, O., et al.: Leakage current through the poly-crystalline HfO\(_{2}\): trap densities at grains and grain boundaries. J. Appl. Phys. 114(13), 1–6 (2013)

    Article  Google Scholar 

  70. Larcher, L., et al.: Multi-scale modeling of HfOx-ReRAM operation and variability RRAMs? State of the art. EMRS (2015)

  71. Pesic, M.: Gate Stack Engineering for Emerging Polarization based Non-volatile Memories. BoD–Books on Demand, 14 Jul 2017

  72. Capron, N., et al.: Migration of oxygen vacancy in HfO\(_{2}\) and across the HfO\(_{2}\)/SiO\(_{2}\) interface: a first-principles investigation. Appl. Phys. Lett. 91(19), 192905 (2007)

    Article  Google Scholar 

  73. McPherson, J., et al.: Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82(13), 2121–2123 (2003)

    Article  Google Scholar 

  74. Li, C., et al.: Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 8(11), 3571–3579 (2015)

    Article  Google Scholar 

  75. Starschich, S., et al.: Evidence for oxygen vacancies movement during wake-up in ferroelectric hafnium oxide. Appl. Phys. Lett. 108(3), 032903 (2016)

    Article  Google Scholar 

  76. Larcher, L., et al.: Microscopic understanding and modeling of HfO\(_{2}\) RRAM device physics. In: 2012 IEEE International Electron Devices Meeting (IEDM), pp. 20–21. IEEE (December 2012)

  77. Tran, X.A., et al.: Self-selection unipolar HfO\(_{x}\)-based RRAM. IEEE Trans. Electron Devices 60(1), 391–395 (2013)

    Article  MathSciNet  Google Scholar 

  78. Clima, S., et al.: Identification of the ferroelectric switching process and dopant-dependent switching properties in orthorhombic HfO\(_{2}\): a first principles insight. Appl. Phys. Lett. 104(9), 092906 (2014)

    Article  Google Scholar 

  79. Masuduzzaman, M., et al.: Hot atom damage (HAD) limited TDDB lifetime of ferroelectric memories. Tech. Dig. Int. Electron Devices Meet. IEDM, No. Fig 9, pp. 566–569 (2013)

  80. Masuduzzaman, M., et al.: Observation and control of hot atom damage in ferroelectric devices. IEEE Trans. Electron Devices 61(10), 3490–3498 (2014)

    Article  Google Scholar 

  81. Yurchuk, E., et al.: Origin of the endurance degradation in the novel HfO\(_{2}\)-based 1T ferroelectric non-volatile memories. In: 2014 IEEE International Reliability Physics Symposium, pp. 2E-5. IEEE (June 2014)

  82. Kupke, S., et al.: Dynamic off-state TDDB of ultra short channel HKMG nFETS and its implications on CMOS logic reliability. In: 2014 IEEE International Reliability Physics Symposium, pp. 5B-1. IEEE (June 2014)

  83. Mueller, S., et al.: Development of HfO\(_{2}\)-based ferroelectric memories for future CMOS technology nodes. https://www.bod.de/buchshop/development-of-hfo2-based-ferroelectric-memories-for-future-cmos-technology-nodes-stefan-ferdinand-mueller-9783739248943

  84. Orihara, H., et al.: A theory of DE hysteresis loop based on the Avrami model. J. Phys. Soc. Jpn. 63(3), 1031–1035 (1994)

    Article  Google Scholar 

  85. So, Y.W., et al.: Polarization switching kinetics of epitaxial Pb (Zr 0.4 Ti 0.6) O\(_{3}\) thin films. Appl. Phys. Lett. 86(9), 092905 (2005)

    Article  Google Scholar 

  86. Tagantsev, A.K., et al.: Non-Kolmogorov–Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B 66(21), 214109 (2002)

    Article  Google Scholar 

  87. Du, X., et al.: Frequency spectra of fatigue of PZT and other ferroelectric thin films. In: MRS Proceedings. Vol. 493, p. 311. Cambridge University Press (1997)

  88. Merz, W.J., et al.: Domain formation and domain wall motions in ferroelectric BaTiO\(_{3}\) single crystals. Phys. Rev. 95(3), 690 (1954)

    Article  Google Scholar 

  89. Roelofs, A., et al.: Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity. Appl. Phys. Lett. 81(27), 5231–5233 (2002)

    Article  Google Scholar 

  90. Rabe, K., Ahn, C.H., Triscone, J.-M. (Eds.): Physics of ferroelectrics: a modern perspective. Topics Appl. Phys. 105, 69–116 (2007)

  91. Devonshire, A.F., et al.: XCVI. Theory of barium titanate. Philos. Mag. 40, 1040 (1949)

    Article  Google Scholar 

  92. Landau, L., Khalatnikov, I.: On the anomalous absorption of sound near a second order phase transition point. Dokl. Akad. Nauk SSSR 96, 469–472 (1954)

    MATH  Google Scholar 

  93. Ginzburg, V.L., Landau, L.D.: On the theory of superconductivity. Zh. Exp. Theor. Fiz. 20, 1064 (1950)

    Google Scholar 

  94. Soh, A.K., et al.: Phase field simulations of hysteresis and butterfly loops in ferroelectrics subjected to electro-mechanical coupled loading. J. Am. Ceram. Soc. 89, 652 (2006)

    Article  Google Scholar 

  95. Merz, W.J., et al.: Domain formation and domain wall motions in ferroelectric BaTiO\(_{3}\) single crystals. Phys. Rev. 95, 690 (1954)

    Article  Google Scholar 

  96. Hoffmann, M., et al.: Direct obeservation of negative capacitance in polycrystalline ferroelectric HfO\(_{2}\). Adv. Funct. Mater. 26, 8643 (2016)

    Article  Google Scholar 

  97. Hoffmann, M., et al.: Stabilizing the ferroelectric phase in doped hafnium oxide. J. Appl. Phys. 118, 072006 (2015)

    Article  Google Scholar 

  98. Schenk, T., et al.: Complex internal bias fields in ferroelectric hafnium oxide. ACS Appl. Mater. Interfaces 7, 20224–20233 (2015)

    Article  Google Scholar 

  99. Salahuddin, S., et al.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008)

    Article  Google Scholar 

  100. Lee, M.H., et al.: Physical thickness 1.x nm ferroelectric HfZrO\(_{x}\) negative capacitance FETs. IEEE Tech. Dig. IEDM, pp. 306–309 (2016)

  101. Duarte, J.P., et al.: Compact models of negative-capacitance FinFETs: lumped and distributed charge models. IEEE Tech. Dig. IEDM 2016, 754–757 (2016)

    Google Scholar 

  102. Charge storage ferroelectric memory hybrid and erase scheme. https://patents.google.com/patent/US20160027490A1/en

  103. Mueller, S., et al.: Correlation between the macroscopic ferroelectric material properties of Si: HfO\(_{2}\) and the statistics of 28 nm FeFET memory arrays. Ferroelectrics 497(1), 42–51 (2016)

    Article  MathSciNet  Google Scholar 

  104. Mayergoyz, I., et al.: Mathematical models of hysteresis. IEEE Trans. Magn. 22(5), 603–608 (1986)

    Article  MATH  Google Scholar 

  105. Miller, S.L., et al.: Device modeling of ferroelectric capacitors. J. Appl. Phys. 68(12), 6463–6471 (1990)

    Article  Google Scholar 

  106. Jiang, B., et al.: Computationally efficient ferroelectric capacitor model for circuit simulation. In: 1997 Symposium on VLSI Technology. Digest of Technical Papers, pp. 141–142. IEEE (June 1997)

  107. Kuhn, C., et al.: A dynamic ferroelectric capacitance model for circuit simulators. In: Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics. ISAF, vol. 2, pp. 695–698. IEEE (2000)

  108. Bartic, A.T., et al.: Preisach model for the simulation of ferroelectric capacitors. J. Appl. Phys. 89(6), 3420–3425 (2001)

    Article  Google Scholar 

  109. Wei, C.G., et al.: A ferroelectric capacitor compact model for circuit simulation. In: Proceedings of the 7th International Conference on Solid-State and Integrated Circuits Technology, Vol. 1, pp. 738–741. IEEE (October 2004)

  110. Rep, D.B.A., et al.: Equivalent-circuit modeling of ferroelectric switching devices. J. Appl. Phys. 85(11), 7923–7930 (1999)

    Article  Google Scholar 

  111. Dunn, D.E., et al.: A ferroelectric capacitor macromodel and parameterization algorithm for SPICE simulation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41(3), 360–369 (1994)

    Article  Google Scholar 

  112. Lim, K., et al.: A semi-empirical cad model of ferroelectric capacitor for circuit simulation. Integr. Ferroelectr. 17(1–4), 97–104 (1997)

    Article  Google Scholar 

  113. Kulkarni, A.K., et al.: A circuit model for a thin film ferroelectric memory device. Ferroelectrics 116(1), 95–106 (1991)

    Article  Google Scholar 

  114. Clark, L.T., et al.: Measurement and simulation of partial switching in ferroelectric PZT thin-films. Integr. Ferroelectr. 3(4), 309–320 (1993)

    Article  Google Scholar 

  115. Sheikholeslami, A., et al.: A pulse-based, parallel-element macromodel for ferroelectric capacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(4), 784–791 (2000)

    Article  Google Scholar 

  116. Tamura, T., et al.: A new circuit simulation model of ferroelectric capacitors. Jpn. J. Appl. Phys. 41(4S), 2654 (2002)

    Article  Google Scholar 

  117. Andò, B., et al.: Electric field detectors in a coupled ring configuration: Preliminary results. In: Smart Materials, Nano-and Micro-Smart Systems, pp. 641702–641702. International Society for Optics and Photonics (December 2006)

  118. Aziz, A., et al.: Physics-based circuit-compatible SPICE model for ferroelectric transistors. IEEE Electron Device Lett. 37(6), 805–808 (2016)

    Google Scholar 

  119. Sivasubramanian, S., et al.: Equivalent circuit and simulations for the Landau–Khalatnikov model of ferroelectric hysteresis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(8), 950–957 (2003)

    Article  Google Scholar 

  120. Song, S.J., et al.: Alternative interpretations for decreasing voltage with increasing charge in ferroelectric capacitors. Sci. Rep. 6, 20825 (2016)

    Article  Google Scholar 

  121. Brennan, C.J., et al.: A physical model for the electrical hysteresis of thin-film ferroelectric capacitors. Ferroelectrics 132(1), 245–257 (1992)

    Article  Google Scholar 

  122. Kim, S., et al.: Highly compact and accurate circuit-level macro modeling of gate-all-around charge-trap flash memory. JJAP 56, 014302 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Pešić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pešić, M., Künneth, C., Hoffmann, M. et al. A computational study of hafnia-based ferroelectric memories: from ab initio via physical modeling to circuit models of ferroelectric device. J Comput Electron 16, 1236–1256 (2017). https://doi.org/10.1007/s10825-017-1053-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1053-0

Keywords

Navigation