Skip to main content
Log in

Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors

  • Materials for Advanced Semiconductor Memories
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Ferroelectrics are promising for nonvolatile memories. However, the difficulty of fabricating ferroelectric layers and integrating them into complementary metal oxide semiconductor (CMOS) devices has hindered rapid scaling. Hafnium oxide is a standard material available in CMOS processes. Ferroelectricity in Si-doped hafnia was first reported in 2011, and this has revived interest in using ferroelectric memories for various applications. Ferroelectric hafnia with matured atomic layer deposition techniques is compatible with three-dimensional capacitors and can solve the scaling limitations in 1-transistor-1-capacitor (1T-1C) ferroelectric random-access memories (FeRAMs). For ferroelectric field-effect-transistors (FeFETs), the low permittivity and high coercive field Ec of hafnia ferroelectrics are beneficial. The much higher Ec of ferroelectric hafnia, however, makes high endurance a challenge. This article summarizes the current status of ferroelectricity in hafnia and explains how major issues of 1T-1C FeRAMs and FeFETs can be solved using this material system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. T. Mitsui, “Ferroelectrics and Antiferroelectrics,” in Springer Handbook of Condensed Matter and Materials Data, W. Martienssen, H. Warlimont, Eds. (Springer-Verlag Berlin, 2005), pp. 903–938.

  2. T. Mikolajick, C.-U. Pinnow, Proc. Nonvolatile Mem. Technol. Symp. (JPL Publishing, Pasadena, CA, 2002), pp. 4–6.

    Google Scholar 

  3. D.A. Buck, “Ferroelectrics for Digital Information Storage and Switching,” master’s thesis, Massachusetts Institute of Technology Digital Computer Laboratory (1952).

  4. J.R. Anderson, Trans. Am. Inst. Electr. Eng. Pt. 1 71, 395 (1953).

    Google Scholar 

  5. D. Bondurant, Ferroelectrics 112, 273 (1990).

    Google Scholar 

  6. C.-U. Pinnow, T. Mikolajick, J. Electrochem. Soc. 151, K13 (2004).

    Google Scholar 

  7. S.Y. Lee, K. Kim, Int. Electron Devices Mtg. (2002), pp. 547–550.

  8. J.-M. Koo, B.-S. Seo, S. Kim, S. Shin, J.-H. Lee, H. Baik, J.-H. Lee, J.H. Lee, B.-J. Bae, J.-E. Lim, D.-C. Yoo, S.-O. Park, H.-S. Kim, H. Han, S. Baik, J.-Y. Choi, Y.J. Park, Y. Park, Int. Electron Devices Mtg. (2005), pp. 340–343.

  9. C.-P. Yeh, M. Lisker, B. Kalkofen, E.P. Burte, AIP Adv. 6 (3), 035128 (2016).

    Google Scholar 

  10. H.P. McAdams, R. Acklin, T. Blake, X.-H. Du, J. Eliason, J. Fong, W.F. Kraus, D. Liu, S. Madan, T. Moise, S. Natarajan, N. Qian, Y. Qiu, K.A. Remack, J. Rodriguez, J. Roscher, A. Seshadri, S.R. Summerfelt, IEEE J. Solid-State Circuits 39, 667 (2004).

    Google Scholar 

  11. I.M. Ross, “Semiconductive Translating Device,” US Patent US2791760 A (1955).

  12. T.P. Ma, J.-P. Han, IEEE Electron Device Lett. 23, 386 (2002).

    Google Scholar 

  13. S. Sakai, R. Ilangovan, IEEE Electron Device Lett. 25, 369 (2004).

    Google Scholar 

  14. J. Robertson, Eur. J. Appl. Phys. 28, 265 (2004).

    Google Scholar 

  15. M.T. Bohr, R.S. Chau, T. Ghani, K. Mistry, IEEE Spectr. 44, 29 (2007).

    Google Scholar 

  16. R. Materlik, C. Künneth, A. Kersch, J. Appl. Phys. 117, 134109 (2015).

    Google Scholar 

  17. T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Appl. Phys. Lett. 99, 102903 (2011).

    Google Scholar 

  18. T.S. Böscke, St. Teichert, D. Bräuhaus, J. Müller, U. Schröder, U. Böttger, T. Mikolajick, Appl. Phys. Lett. 99, 112904 (2011).

    Google Scholar 

  19. J.F. Scott, J. Phys. Condens. Matter 20 (2), 021001 (2007), http://iopscience.iop.org/article/10.1088/0953-8984/20/02/021001/meta.

  20. D. Martin, J. Müller, T. Schenk, T.M. Arruda, A. Kumar, E. Strelcov, E. Yurchuk, S. Müller, D. Pohl, U. Schröder, S.V. Kalinin, T. Mikolajick, Adv. Mater. 26, 8198 (2014).

    Google Scholar 

  21. M. Hoffmann, U. Schroeder, C. Künneth, A. Kersch, S. Starschich, U. Böttger, T. Mikolajick, Nano Energy 18, 154 (2015).

    Google Scholar 

  22. S.W. Smith, A.R. Kitahara, M.A. Rodriguez, M.D. Henry, M.T. Brumbach, J.F. Ihlefeld, Appl. Phys. Lett. 110, 072901 (2017).

    Google Scholar 

  23. J. Mueller, U. Schröder, T.S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, L. Frey, J. Appl. Phys. 110, 114113 (2011).

    Google Scholar 

  24. S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Adv. Funct. Mater. 22, 2412 (2012).

    Google Scholar 

  25. J. Müller, T.S. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, L. Frey, Appl. Phys. Lett. 99, 112901 (2011).

    Google Scholar 

  26. U. Schroeder, E. Yurchuk, J. Müller, D. Martin., T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S.V. Kalinin, T. Mikolajick, Jpn. J. Appl. Phys. 53, 08LE02 (2014).

    Google Scholar 

  27. L. Xu, S. Shibayama, K. Izukashi, T. Nishimura, T. Yajima, S. Migita, A. Toriumi, IEEE Int. Electron Devices Mtg. (2016), pp. 25.2.1–25.2.4.

  28. P. Polakowski, J. Müller, Appl. Phys. Lett. 106, 232905 (2015).

    Google Scholar 

  29. X. Sang, E.D. Grimley, T. Schenk, U. Schroeder, J.M. LeBeau, Appl. Phys. Lett. 106, 162905 (2015).

    Google Scholar 

  30. M.H. Park, T. Schenk, C.M. Fancher, E.D. Grimley, C. Zhou, C. Richter, J.M. LeBeau, J.L. Jones, T. Mikolajick, U. Schroeder, J. Mater. Chem. C 5, 4677 (2017).

    Google Scholar 

  31. E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A.P. Graham, T. Melde, U. Schröder, T. Mikolajick, Thin Solid Films 533, 88 (2013).

    Google Scholar 

  32. M.H. Park, Y.H. Lee, H.J. Kim, T. Schenk, W. Lee, K.D. Kim, F.P.G. Fengler, T. Mikolajick, U. Schroeder, C.S. Hwang, Nanoscale 9, 9973 (2017).

    Google Scholar 

  33. M.H. Park, H.J. Kim, T. Moon, K.D. Kim, Y.H. Lee, S.D. Hyun, T. Mikolajick, U. Schroeder, C.S. Hwang, Nanoscale 10, 716 (2018).

    Google Scholar 

  34. P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, J. Müller, 2014 Int. Mem. Workshop (2014), pp. 1–4.

  35. E. Yurchuk, S. Mueller, D. Martin, S. Slesazeck, U. Schroeder, T. Mikolajick, J. Müller, J. Paul, R. Hoffmann, J. Sundqvist, T. Schlosser, R. Boschke, R. van Bentum, M. Trentzsch, Reliability Physics Symp. 2014 IEEE Int. (2014) pp.2E.5.1–2E.5.5.

  36. T. Schenk, M. Hoffmann, J. Ocker, M. Pešić, T. Mikolajick, U. Schroeder, ACS Appl. Mater. Interfaces 7, 20224 (2015).

    Google Scholar 

  37. M. Pešić, F.P.G. Fengler, L. Larcher, A. Padovani, T. Schenk, E.D. Grimley, X. Sang, J.M. LeBeau, S. Slesazeck, U. Schroeder, T. Mikolajick, Adv. Funct. Mater. 26, 4601 (2016).

    Google Scholar 

  38. J. Müller, P. Polakowski, S. Mueller, T. Mikolajick, ECS J. Solid State Sci. Technol. 4 (5), N30 (2015).

    Google Scholar 

  39. A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruverman, A. Zenkevich, ACS Appl. Mater. Interfaces 8, 7232 (2016).

    Google Scholar 

  40. T. Schenk, U. Schroeder, T. Mikolajick, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62 (3), 596 (2015)

    Google Scholar 

  41. U. Schroeder, M. Pešic, T. Schenk, H. Mulaosmanovic, S. Slesazeck, J. Ocker, C. Richter, E. Yurchuk, K. Khullar, J. Müller, P. Polakowski, E.D. Grimley, J.M. LeBeau, S. Flachowsky, S. Jansen, S. Kolodinski, R. van Bentum, A. Kersch, C. Künneth, T. Mikolajick, Eur. Solid-State Device Res. Conf. (2016), pp. 364–368.

  42. F.P.G. Fengler, M. Pešić, S. Starschich, T. Schneller, C. Künneth, U. Böttger, H. Mulaosmanovic, T. Schenk, M.H. Park, R. Nigon, P. Muralt, T. Mikolajick, U. Schroeder, Adv. Electron. Mater. 3, 1600505 (2017).

    Google Scholar 

  43. J. Muüller, T.S. Boüscke, U. Schroüder, S. Mueller, D. Braüuhaus, U. Boüttger, L. Frey, T. Mikolajick, Nano Lett. 12, 4318 (2012).

    Google Scholar 

  44. M. Pešić, S. Knebel, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, IEEE Int. Electron Devices Mtg. (2016), pp. 11.6.1–11.6.4.

  45. M. Pešić, M. Hoffmann, C. Richter, T. Mikolajick, U. Schroeder, Adv. Funct. Mater. 26, 7486 (2016).

    Google Scholar 

  46. M. Pešić, M. Hoffmann, C. Richter, S. Slesazeck, T. Kämpfe, L.M. Eng, T. Mikolajick, U. Schroeder, Eur. Solid-State Device Res. Conf. 160 (2017).

  47. M. Pešić, M. Hoffmann, C. Richter, S. Slesazeck, U. Schroeder, T. Mikolajick, Proc. Nonvolatile Mem. Technol. Symp. (2017), doi: 10.1109/NVMTS.2017.8171307.

  48. S.L. Miller, P.J. McWhorter, J. Appl. Phys. 72, 5999 (1992).

    Google Scholar 

  49. S. Salahuddin, S. Datta, Nano Lett. 8, 405 (2008).

    Google Scholar 

  50. N. Gong, T.P. Ma, IEEE Electron Device Lett. 37, 1123 (2016).

    Google Scholar 

  51. T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Int. Electron Devices Mtg. (2011), pp. 24.5.1–24.5.4.

  52. J. Müller, T.S. Boescke, U. Schroder, R. Hoffmann, T. Mikolajick, L. Frey, IEEE Electron Device Lett. 33 (2), 185 (2012).

    Google Scholar 

  53. J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder, T. Mikolajick, Symp. VLSI Technol. Dig. Tech. Pap. (2012), p. 25.

  54. M. Trentzsch, S. Flachowsky, R. Richter, J. Paul, B. Reimer, D. Utess, S. Jansen, H. Mulaosmanovic, S. Müller, S. Slesazeck, J. Ocker, M. Noack, J. Müller, P. Polakowski, J. Schreiter, S. Beyer, T. Mikolajick, B. Rice, IEEE Int. Electron Devices Mtg. (2016), pp. 11.5.1–11.5.4.

  55. S. Duenkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D.-A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, S. Beyer, IEEE Int. Electron Devices Mtg. (2017), pp. 19.7.1–19.7.4.

  56. C.I. Lin, A.I. Khan, S. Salahuddin, C. Hu, IEEE Trans. Electron Devices 63 (5), 2197 (2016).

    Google Scholar 

  57. K.S. Li, P.-G. Chen, T.-Y. Lai, C.-H. Lin, C.-C. Cheng, C.-C. Chen, Y.-J. Wei, Y.-F. Hou, M.-H. Liao, M.-H. Lee, M.-C. Chen, J.-M. Sheih, W.-K. Yeh, F.-L. Yang, S. Salahuddin, C. Hu, IEEE Int. Electron Devices Mtg. (2015), pp. 22.6.1–22.6.4.

  58. M.H. Lee, S.-T. Fan, C.-H. Tang, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, C.W. Liu, IEEE Int. Electron Devices Mtg. (2016), pp. 12.1.1–12.1.4.

  59. M. Hoffmann, M. Pešić, K. Chatterjee, A.I. Khan, S. Salahuddin, S. Slesazeck, U. Schroeder, T. Mikolajick, Adv. Funct. Mater. 20, 8643 (2016).

    Google Scholar 

  60. M. Hoffmann, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, Joint Int. EUROSOI Workshop Int. Conf. Ultimate Integration Silicon (EUROSOI-ULIS) (2017), pp. 1–4.

  61. Y.J. Kim, M.H. Park, Y.H. Lee, H.J. Kim, W. Jeon, T. Moon, K.D. Kim, D.S. Jeong, H. Yamada, C.S. Hwang, Sci. Rep. 6, 19039 (2016).

    Google Scholar 

  62. Y.J. Kim, H. Yamada, T. Moon, Y.J. Kwon, C.H. An, H.J. Kim, K.D. Kim, Y.H. Lee, S.D. Hyun, M.H. Park, C.S. Hwang, Nano Lett. 16 (7), 4375 (2016).

    Google Scholar 

  63. E. Yurchuk, J. Müller, S. Müller, J. Paul, M. Pešić, R. van Bentum, U. Schroeder, T. Mikolajick, IEEE Trans. Electron Devices 63 (9), 3501 (2016).

    Google Scholar 

  64. J. Mueller, P. Polakowski, S. Muller, H. Mulaosmanovic, J. Ocker, T. Mikolajick, S. Slesazeck, S. Flachowsky, M. Trentzsch, Non-Volatile Mem. Technol. Symp. (Pittsburgh, PA, 2016), pp. 1–7.

  65. K. Chatterjee, S. Kim, G. Karbasian, A.J. Tan, A.K. Yadav, A.I. Khan, C. Hu, S. Salahuddin, IEEE Electron Device Lett. 38 (10), 1379 (2017).

    Google Scholar 

  66. M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, Nano Energy 12, 131 (2015).

    Google Scholar 

  67. M.H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gärtner, T. Mikolajick, U. Schroeder, Nano Energy 36, 381 (2017).

    Google Scholar 

  68. J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T.M. Arruda, S.V. Kalinin, T. Schlösser, R. Boschke, R. van Bentum, U. Schröder,

Download references

Acknowledgements

The authors thank all current and former team members at NaMLab, Fraunhofer IPMS-CNT, Global Foundries, Seoul National University, and all cooperation partners for their dedicated work on ferroelectric hafnium oxide and its applications. Part of this work was supported by the EFRE Fund of the European Commission within the scope of technology development, the Free State of Saxony (Germany), and the German Research Foundation (Deutsche Forschungsge-meinschaft; Project MI 1247/11–2). M.H.P. is supported by a Humboldt Postdoctoral Fellowship from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mikolajick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikolajick, T., Slesazeck, S., Park, M.H. et al. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bulletin 43, 340–346 (2018). https://doi.org/10.1557/mrs.2018.92

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2018.92

Navigation