Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Ferroelectric crystals (especially oxides in the form of ceramics) are important basic materials for technological applications in capacitors capacitor and in piezoelectric, pyroelectric, and optical devices. In many cases their nonlinear characteristics turn out to be very useful, for example in optical second-harmonic generators optical second-harmonic generator and other nonlinear optical devices. nonlinear optical device In recent decades, ceramic thin-film ferroelectrics have been utilized intensively as parts of memory devices. memory devices Liquid crystal liquid crystal ferroelectrics and polymer ferroelectrics polymer ferroelectrics are utilized in the broad field of fast displays fast displays in electronic equipment.

This chapter surveys the nature of ferroelectrics, making reference to the data presented in the Landolt–Börnstein data collection Numerical Data and Functional Relationships in Science and Technology, Vol. III/36, Ferroelectrics and Related Substances (LB III/36). The data in the figures in this chapter have been taken mainly from the Landolt–Börnstein collection. The Landolt–Börnstein volume mentioned above consists of three subvolumes: Subvolume A [5.1,2], covering oxides; oxide ferroelectrics Subvolume B [5.3], covering inorganic crystals inorganic ferroelectrics other than oxides; and Subvolume C [5.4], covering organic crystals, organic ferroelectrics liquid crystals, and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

PZT:

piezoelectric material

SAW:

surface acoustic wave

SHG:

second-harmonic generation

References

  1. Y. Shiozaki, E. Nakamura, T. Mitsui (Eds.): Ferroelectrics and Related Substances: Oxides: Perovskite-Type Oxides and LiNbO3 Family, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=kc03r98pev9h (Springer, Berlin, Heidelberg 2001)

    Google Scholar 

  2. Y. Shiozaki, E. Nakamura, T. Mitsui (Eds.): Ferroelectrics and Related Substances: Oxides: Oxides Other Than Perovskite-Type Oxides and LiNbO3 Family, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=kc03r98pev9h (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  3. Y. Shiozaki, E. Nakamura, T. Mitsui (Eds.): Ferroelectrics and Related Substances: Inorganic Crystals Other Than Oxides, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=kc03r98pev9h (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  4. Y. Shiozaki, E. Nakamura, T. Mitsui (Eds.): Ferroelectrics and Related Substances: Organic Crystals, Liquid Crystals and Polymers, Landolt–Börnstein, New Series http://www.springerlink.com/link.asp?id=kc03r98pev9h (Springer, Berlin, Heidelberg 2005) in preparation

    Google Scholar 

  5. J. Valasek: Piezoelectric and Allied Phenomena in Rochelle Salt, Phys. Rev. 15, 537 (1920)

    Google Scholar 

  6. J. Valasek: Piezo-Electric and Allied Phenomena in Rochelle Salt, Phys. Rev. 17, 475 (1921)

    Article  ADS  Google Scholar 

  7. T. Mitsui, E. Nakamura, I. Tatsuzaki: An Introduction to the Physics of Ferroelectrics (Gordon and Breach, New York 1976)

    Google Scholar 

  8. F. Jona, G. Shirane: Ferroelectric Crystals (Dover Publications, New York 1993)

    Google Scholar 

  9. B. A. Strukov, A. P. Levanyuk: Ferroelectric Phenomena in Crystals: Physical Foundations (Springer, Berlin, Heidelberg 1998)

    MATH  Google Scholar 

  10. M. E. Lines, A. M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford 1979)

    Google Scholar 

  11. Y. Xu: Ferroelectric Materials and Their Applications (North-Holland, Amsterdam 1991)

    Google Scholar 

  12. B. Jaffe, W. R. Cook Jr., H. Jaffe: Piezoelectric Ceramics (Academic Press, London 1971)

    Google Scholar 

  13. J. Zelenka: Piezoelectric Resonators and Their Applications (Elsevier, Amsterdam 1986)

    Google Scholar 

  14. T. Ikeda: Fundamentals of Piezoelectricity (Oxford Univ. Press, Oxford 1990)

    Google Scholar 

  15. R. A. Cowley: Structural Phase Transitions (Consultant Bureau, New York 1980)

    Google Scholar 

  16. K. A. Miller, H. Thomas (Eds.): Structural Phase Transitions I, Topics in Current Physics, Vol. 23 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  17. M. Fujimoto: The Physics of Structural Phase Transitions (Springer, Berlin, Heidelberg 1997)

    MATH  Google Scholar 

  18. R. Blinc, A. P. Levanyuk (Eds.): Incommensurate Phases in Dielectrics, Modern Problems in Condensed Matter Science 14 (Elsevier, Amsterdam 1986)

    Google Scholar 

  19. F. J. Scott: Soft-mode spectroscopy: Experimental studies of structural phase transitions, Rev. Mod. Phys. 46, 83 (1974)

    Article  ADS  Google Scholar 

  20. G. Shirane: Neutron scattering studies of structural phase transitions, Rev. Mod. Phys. 46, 437 (1974)

    Article  ADS  Google Scholar 

  21. C. H. Wang: Raman and Brillouin scattering spectroscopy of phase transitions in solids. In: Vibrational Spectroscopy of Phase Transitions, ed. by Z. Iqbal, F. J. Owens (Academic Press, Orlando 1984) pp. 153–207

    Google Scholar 

  22. J. M. Herbert: Ceramic Dielectrics and Capacitors, Electrocomp. Sci. Mon., Vol. 6 (Gordon and Breach, New York 1985)

    Google Scholar 

  23. B. E. Vugmeister, M. D. Glinchuk: Dipole glass and ferroelectricity in random-site electric dipole systems, Mod. Phys. 62, 993 (1990)

    Article  ADS  Google Scholar 

  24. L. E. Cross: Relaxor ferroelectrics, Ferroelectrics 76, 241 (1987)

    Google Scholar 

  25. S. Singh: Nonlinear optical materials. In: Handbook of Lasers with Selected Data on Optical Technology, ed. by R. J. Pressley (The Chemical Rubber Co., Cleveland 1971) pp. 489–525

    Google Scholar 

  26. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan: Handbook of Nonlinear Optical Crystals, Springer Series in Optical Science, Vol. 64, ed. by A. E. Siegman (Springer, Berlin, Heidelberg 1991)

    Google Scholar 

  27. P. Yeh: Introduction to Photorefractive Nonlinear Optics (Wiley, New York 1993)

    Google Scholar 

  28. G. Rosenman, A. Skliar, A. Arie: Ferroelectric domain engineering for quasi-phase-matched nonlinear optical devices, Ferroelectr. Rev. 1, 263 (1999)

    Google Scholar 

  29. N. Setter, E. L. Colla: Ferroelectric Ceramics (Birkhäuser, Basel 1993)

    Google Scholar 

  30. B. A. Tuttle, S. B. Desu, R. Ramesh, T. Shiosaki: Ferroelectric Thin Films IV (Materials Research Society, Pittsburgh 1995)

    Google Scholar 

  31. C. P. Araujo, J. F. Scott, G. W. Taylor (Eds.): Ferroelectric Thin Films: Synthesis and Basic Properties (Gordon and Breach, New York 1996)

    Google Scholar 

  32. R. Ramesh (Ed.): Thin Film Ferroelectric Materials and Devices, Electronic Materials Science and Technology, Vol. 3 (Kluwer, Dordrecht 1997)

    Google Scholar 

  33. J. F. Scott: The physics of ferroelectric ceramic thin films for memory applications, Ferroelectr. Rev. 1, 1 (1998)

    Google Scholar 

  34. D. Damjanovic: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 62, 1267 (1998)

    Article  ADS  Google Scholar 

  35. J. F. Scott: Ferroelectric Memories, Springer Series in Advanced Microelectronics, Vol. 3 (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  36. R. M. White: Surface elastic waves, Proc. IEEE 58, 1238 (1970)

    Article  Google Scholar 

  37. G. W. Farnell, E. L. Adler: Acoustic Wave Propagation in Thin Layers. In: Physical Acoustics, Vol. 9, ed. by W. P. Mason, R. N. Thurston (Academic Press, New York 1972) pp. 35–127

    Google Scholar 

  38. A. A. Oliner (Ed.): Acoustic Surface Waves (Springer, Berlin, Heidelberg 1978)

    Google Scholar 

  39. K.-Y. Hashimoto: Surface Acoustic Wave Devices in Telecommunications, Modeling and Simulation (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  40. J. M. Herbert: Ferroelectric Transducers and Sensors, Electrocomp. Sci. Mon., Vol. 3 (Gordon and Breach, New York 1982)

    Google Scholar 

  41. W. H. de Jeu: Physical Properties of Liquid Crystalline Materials (Gordon and Breach, New York 1980)

    Google Scholar 

  42. J. W. Goodby, R. Blinc, N. A. Clark, S. T. Lagerwall, M. A. Osipov, S. A. Pikin, T. Sakurai, K. Yoshino, B. Zeks: Ferroelectric Liquid Crystals: Principles, Properties and Applications, Ferroelectrics and Related Phenomena, Vol. 7 (Gordon and Breach, New York 1991)

    Google Scholar 

  43. G. W. Taylor (Ed.): Ferroelectric Liquid Crystals: Principles, Preparations and Applications (Gordon and Breach, New York 1991)

    Google Scholar 

  44. L. M. Blinov, V. G. Chigrinov: Electric Effects in Liquid Crystal Materials (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

  45. A. Fukada, Y. Takanishi, T. Isozaki, K. Ishikawa, H. Takezoe: Antiferroelectric Chiral Smectic Liquid Crystals, J. Mater. Chem. 4, 997 (1994)

    Article  Google Scholar 

  46. P. J. Collings, J. S. Patel (Eds.): Handbook of Liquid Crystal Research (Oxford Univ. Press, Oxford 1997)

    Google Scholar 

  47. S. T. Lagerwall: Ferroelectric and Antiferroelectric Liquid Crystals (Wiley VCH, Weinheim 1999)

    Google Scholar 

  48. T. Furukawa: Ferroelectric Properties of Vinylidene Fluoride Copolymers, Phase Transitions 18, 143 (1989)

    Google Scholar 

  49. D. K. Das-Gupta (Ed.): Ferroelectric Polymer and Ceramic-Polymer Composites (Trans Tech Publications, Aedermannsdorf 1994)

    Google Scholar 

  50. H. S. Nalva (Ed.): Ferroelectric Polymers: Chemistry, Physics and Applications (Marcel Dekker, New York 1995)

    Google Scholar 

  51. H. Kodama, Y. Takahashi, T. Furukawa: Effects of Annealing on the Structure and Switching Characteristics of VDF/TrFE Copolymers, Ferroelectrics 205, 433 (1997)

    Google Scholar 

  52. N. A. Clark, S. T. Lagerwall: Submicrosecond Bistable Electro-Optic Switching in Liquid Crystals, Appl. Phys. Lett. 36, 899 (1980)

    Article  ADS  Google Scholar 

  53. A. D. L. Chandani, E. Gorecka, Y. Ouchi, H. Takezoe, A. Fukuda: Antiferroelectric Chiral Smectic Phases Responsible for the Tristable Switching in MHPOBC, Jpn. J. Appl. Phys. 28, L1265 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this entry

Cite this entry

Mitsui, T. (2005). Ferroelectrics and Antiferroelectrics. In: Martienssen, W., Warlimont, H. (eds) Springer Handbook of Condensed Matter and Materials Data. Springer Handbooks. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-30437-1_13

Download citation

Publish with us

Policies and ethics