Abelson, R. P. (1964). Mathematical models of the distribution of attitudes under controversy. In N. Frederiksen & H. Gulliksen (Eds.), Contributions to mathematical psychology (pp. 142–160). New York: Holt, Rinehart and Winston.
Google Scholar
Amblard, F., & Deffuant, G. (2004). The role of network topology on extremism propagation with the relative agreement opinion dynamics. Physica A: Statistical Mechanics and its Applications, 343(16), 725–738.
Google Scholar
Asch, S. E. (1956). Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychological Monographs: General and Applied, 70(9), 1–70.
Google Scholar
Axelrod, R. (1997). The dissemination of culture: a model with local convergence and global polarization. Journal of Conflict Resolution, 41(2), 203–226.
Google Scholar
Bianchi, F., & Squazzoni, F. (2015). Agent-based models in sociology. Wiley Interdisciplinary Reviews: Computational Statistics, 7(4), 284–306.
Google Scholar
Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of fads, fashion, custom, and cultural-change as informational cascades. Journal of Political Economy, 100(5), 992–1026.
Google Scholar
Bond, R. M., Fariss, C. J., Jones, J. J., Kramer, A., Marlow, C., Settle, J., & Fowler, J. H. (2012). A 61-million-person experiment in social influence and political mobilization. Nature, 489(7415), 295–298.
Google Scholar
Bourdieu, P. (1984). Distinction: a social critique of the judgment of taste. Cambridge: Harvard University Press.
Google Scholar
Brewer, M. B. (1991). The social self: on being the same and different at the same time. Personality and Social Psychology Bulletin, 17(5), 475–482.
Google Scholar
Brughmans, T. (2010). Connecting the dots: towards archaeological network analysis. Oxford Journal of Archaeology, 29(3), 277–303.
Google Scholar
Byrne, D. (1971). The attraction paradigm. New York: Academic Press.
Google Scholar
Carley, K. (1991). A theory of group stability. American Sociological Review, 56(3), 331–354.
Google Scholar
Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Reviews of Modern Physics, 81(2), 591–646.
Google Scholar
Cegielski, W. H., & Rogers, J. D. (2016). Rethinking the role of agent-based modeling in archaeology. Journal of Anthropological Archaeology, 41, 283–298.
Google Scholar
Centola, D., González-Avella, J. C., Eguíluz, V. M., & San Miguel, M. (2007). Homophily, cultural drift, and the co-evolution of cultural groups. Journal of Conflict Resolution, 51(6), 905–929.
Google Scholar
Chacoma, A., & Zanette, D. H. (2015). Opinion formation by social influence: from experiments to modeling. PLoS One, 10(10), e0140406.
Google Scholar
Coleman, J. S. (1990). Foundations of social theory. Cambridge: Harvard University Press.
Google Scholar
Dandekar, P., Goel, A., & Lee, D. T. (2013). Biased assimilation, homophily, and the dynamics of polarization. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5791–5796.
Google Scholar
De Sanctis, L., & Galla, T. (2009). Effects of noise and confidence thresholds in nominal and metric Axelrod dynamics of social influence. Phys Rev E Statist Nonlin Soft Matter Phys, 79(4), 046108. https://doi.org/10.1103/PhysRevE.79.046108.
Article
Google Scholar
Deffuant, G., Neau, D., Amblard, F., & Weisbuch, G. (2000). Mixing beliefs among interacting agents. Advance in Complex Systems, 3(1), 87–98.
Google Scholar
Deffuant, G., Huet, S., & Amblard, F. (2005). An individual-based model of innovation diffusion mixing social value and individual benefit. Americal Journal of Sociology, 110(4), 1041–1069.
Google Scholar
DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345), 118–121.
Google Scholar
Duggins, P. (2017). A psychologically-motivated model of opinion change with applications to American politics. Journal of Artificial Societies and Social Simulation, 20(1). http://jasss.soc.surrey.ac.uk/20/1/13.html). https://doi.org/10.18564/jasss.3316.
Early, P. C., & Mosakowski, E. (2000). Creating hybrid team cultures: an empirical test of transnational team functioning. Academy of Management Journal, 43(1), 26–49.
Google Scholar
Epstein, J. M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60.
Google Scholar
Feld, S. L. (1982). Social structural determinants of similarity among associates. American Sociological Review, 47(6), 797–801.
Google Scholar
Feliciani, T., Flache, A., & Tolsma, J. (2017). How, when and where can spatial segregation induce opinion polarization? Two competing models. Journal of Artificial Societies and Social Simulation, 20(2), 6. http://jasss.soc.surrey.ac.uk/20/2/6.html. https://doi.org/10.18564/jasss.3419.
Article
Google Scholar
Festinger, L. (1957). A theory of cognitive dissonance. Evanston: Row, Petersen and Company.
Google Scholar
Festinger, L., Schachter, S., & Back, K. (1950). Social pressures in informal groups. Stanford: Stanford University Press.
Google Scholar
Flache, A., & Hegselmann, R. (2001). Do irregular grids make a difference? Relaxing the spatial regularity assumption in cellular models of social dynamics. JASSS, 4(4) http://jasss.soc.surrey.ac.uk/4/4/6.html.
Flache, A., & Macy, M. W. (2011a). Local convergence and global diversity: from interpersonal to social influence. Journal of Conflict Resolution, 55(6), 970–995.
Google Scholar
Flache, A., & Macy, M. W. (2011b). Small worlds and cultural polarization. Journal of Mathematical Sociology, 35(1–3), 146–176.
Google Scholar
Flache, A., & Mäs, M. (2008a). How to get the timing right. A computational model of the effects of the timing of contacts on team cohesion in demographically diverse teams. Computational and Mathematical Organization Theory, 14(1), 23–51.
Google Scholar
Flache, A., & Mäs, M. (2008b). Why do faultlines matter? A computational model of how strong demographic faultlines undermine team cohesion. Simulation Modelling Practice and Theory, 16(2), 175–191.
Google Scholar
Flache, A., Macy, M., & Takács, K. (2006). What sustains cultural diversity and what undermines it? Axelrod and beyond. In S. Takahashi (Ed.), Advancing social simulation: Proceedings of the first world congress on social simulation (pp. 9–16). Kyoto: Springer.
Google Scholar
Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of social influence: towards the next frontiers. Journal of Artificial Societies and Social Simulation, 20(4). http://jasss.soc.surrey.ac.uk/20/4/2.html). https://doi.org/10.18564/jasss.3521.
French, J. R. P. (1956). A formal theory of social power. Psychological Review, 63(3), 181–194.
Google Scholar
Friedkin, N. E., & Johnsen, E. C. (1990). Social influence and opinions. The Journal of Mathematical Sociology, 15(3–4), 193–206.
Google Scholar
Friedkin, N. E., & Johnsen, E. C. (2011). Social influence network theory. New York: Cambridge University Press.
Google Scholar
Friedman, T. L. (2005). The world is flat: A brief history of the twenty-first century. New York: Farrar, Straus and Giroux.
Google Scholar
Galam, S. (2002). Minority opinion spreading in random geometry. European Physical Journal B, 25(4), 403–406.
Google Scholar
Gentzkow, M. (2016). Polarization in 2016. Toulouse Network of Information Technology White Paper.
Glaeser, E. L., & Ward, B. A. (2006). Myths and realities of American political geography. Journal of Economic Perspectives, 20(1), 119–144.
Google Scholar
González-Avella, J. C., Cosenza, M. G., Klemm, K., Eguiluz, V. M., & San Miguel, M. (2007). Information feedback and mass media effects in cultural dynamics. Journal of Artificial Societies and Social Simulation, 10(3) http://jasss.soc.surrey.ac.uk/10/3/9.html.
Gravino, P., Monechi, B., Servedio, V. D., Tria, F., & Loreto, V. (2016). Crossing the horizon: exploring the adjacent possible in a cultural system. In F. Pachet, A. Cardoso, V. Corruble, & F. Ghedini (Eds.), Proceedings of the seventh international conference on computational creativity (ICCC 2016) (pp. 115–122). Paris: Sony CSL.
Google Scholar
Greig, J. M. (2002). The end of geography?: globalization, communications, and culture in the international system. Journal of Conflict Resolution, 46(2), 225–243.
Google Scholar
Groeber, P., Lorenz, J., & Schweitzer, F. (2014). Dissonance minimization as a microfoundation of social influence in models of opinion formation. Journal of Mathematical Sociology, 38(3), 147–174.
Google Scholar
Harary, F. (1959). A criterion for unanimity in French’s theory of social power. In D. Cartwright (Ed.), Studies in social power (pp. 168–182). Ann Arbor: Institute for Social Research.
Google Scholar
Hedström, P. (2005). Dissecting the social. Cambridge: Cambridge University Press.
Google Scholar
Hedström, P., & Manzo, G. (2015). Recent trends in agent-based computational research: A brief introduction. Sociological Methods & Research, 44(2), 179–185.
Google Scholar
Hegselmann, R., & Krause, U. (2002). Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artificial Societies and Social Simulation, 5(3) http://jasss.soc.surrey.ac.uk/5/3/2.html.
Heider, F. (1946). Attitudes and cognitive organization. The Journal of Psychology, 21(1), 107–112.
Google Scholar
Holley, R. A., & Liggett, T. M. (1975). Ergodic theorems for weakly interacting infinite systems and the voter model. Annals of Probability, 2(5), 347–370.
Google Scholar
Huckfeldt, R., Johnson, P. E., & Sprague, J. (2004). Political disagreement. In The survival of diverse opinions within communication networks. New York: Cambridge University Press.
Google Scholar
Huet, S., & Deffuant, G. (2010). Openness leads to opinion stability and narrowness to volatility. Advances in Complex Systems, 13(3), 405–423.
Google Scholar
Huet, S., Deffuant, G., & Jager, W. (2008). A rejection mechanism in 2D bounded confidence provides more conformity. Advances in Complex Systems, 11(4), 529–549.
Google Scholar
Jager, W., & Amblard, F. (2005). Uniformity, bipolarization and pluriformity captured as generic stylized behavior with an agent-based simulation model of attitude change. Computational and Mathematical Organization Theory, 10(4), 295–303.
Google Scholar
Karsai, M., Iniguez, G., Kaski, K., & Kertész, J. (2014). Complex contagion process in spreading of online innovation. Journal of The Royal Society Interface, 11(101), 20140694.
Google Scholar
Kermack, W., & McKendrick, A. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society London A, 115, 700–721.
Google Scholar
Klemm, K., Eguiluz, V. M., Toral, R., & San Miguel, M. (2003). Global culture: A noise-induced transition in finite systems. Physical Review E, 67(4), 045101(R).
Google Scholar
Kroeber, A. L., Kluckhohn, C. (1952). Culture: a critical review of concepts and definitions. Papers of the Peabody Museum 47 (1). Cambridge: Peabody Museum.
Google Scholar
Lazarsfeld, P. F., & Merton, R. K. (1954). Friendship and social process: a substantive and methodological analysis. In M. Berger, T. Abel, & C. H. Page (Eds.), Freedom and control in modern society (pp. 18–66). New York: Van Nostrand.
Google Scholar
Lehrer, K. (1975). Social consensus and rational agnoiology. Synthese, 31(1), 141–160.
Google Scholar
Lorenz, J. (2007). Continuous opinion dynamics under bounded confidence: a survey. International Journal of Modern Physics C, 18(12), 1819–1838.
Google Scholar
Macy, M. W., & Flache, A. (2009). Agent based modelling: social order from the bottom up. In P. Hedström & P. Bearman (Eds.), The Oxford handbook of analytical sociology (pp. 245–268). New York: Oxford University Press.
Google Scholar
Macy, M. W., Kitts, J., Flache, A., & Benard, S. (2003). Polarization and dynamic networks. A Hopfield model of emergent structure. In R. Breiger, K. Carley, & P. Pattison (Eds.), Dynamic social network modeling and analysis: workshop summary and papers (pp. 162–173). Washington, DC: The National Academies Press.
Google Scholar
Macy, M. W., Centola, D., Flache, A., Rijt, A. V. D., & Willer, R. (2011). Social mechanisms and generative explanations: computational models with double agents. Analytical sociology and social mechanisms. In P. Demeulenaere (Ed.), Analytical sociology and social mechanisms (pp. 250–265). Cambridge: Cambridge University Press.
Google Scholar
Manzo, G. (2014). Data, generative models, and mechanisms: more on the principles of analytical sociology. In G. Manzo (Ed.), Analytical Sociology: Actions and Networks (pp. 4–52). Chichester: Wiley.
Google Scholar
Mark, N. P. (1998). Beyond individual differences: Social differentiation from first principles. American Sociological Review, 63(3), 309–330.
Google Scholar
Mark, N. P. (2003). Culture and competition: homophily and distancing explanations for cultural niches. American Sociological Review, 68(3), 319–345.
Google Scholar
Mäs, M., & Flache, A. (2013). Differentiation without distancing. Explaining opinion bi-polarization without assuming negative influence. Plos One, 8(11), e74516.
Google Scholar
Mäs, M., Flache, A., & Helbing, D. (2010). Individualization as driving force of clustering phenomena in humans. PLoS Computational Biology, 6(10), e1000959.
Google Scholar
Mäs, M., Flache, A., Takács, K., & Jehn, K. (2013). In the short term we divide, in the long term we unite: demographic crisscrossing and the effects of faultlines on subgroup polarization. Organization Science, 24(3), 716–736.
Google Scholar
Mäs, M., Flache, A. , Kitts, J.K. (2014). Cultural integration and differentiation in groups and organizations. In: V. Dignum and F. Dignum (eds.), Perspectives on culture and agent-based simulations, studies in the philosophy of sociality 3 (pp. 71–90). Springer International Publishing Switzerland 2014.
Mazen, R., & Leventhal, H. (1972). The influence of communicator-recipient similarity upon the beliefs and behavior of pregnant women. Journal of Experimental Social Psychology, 8(4), 289–302.
Google Scholar
McPherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: homophily in social networks. Annual Review of Sociology, 27(1), 415–444.
Google Scholar
Moscovici, S., & Doise, W. (1994). Conflict and consensus: a general theory of collective decisions. London: Sage Publications.
Google Scholar
Myers, D. G. (1982). Polarizing effects of social interaction. In H. Brandstätter, J. H. Davis, & G. Stocker-Kreichgauer (Eds.), Group decision making (pp. 125–161). London: Academic Press.
Google Scholar
Nowak, A., Szamrej, J., & Latané, B. (1990). From private attitude to public opinion: a dynamic theory of social impact. Psychological Review, 97(3), 362–376.
Google Scholar
Okabe, A., Boots, B., & Sugihara, K. (1992). Spatial tessellations - concepts and applications of Voronoi diagrams. Chichester: Wiley.
Google Scholar
Parisi, D., Cecconi, F., & Natale, F. (2003). Cultural change in spatial environments: The role of cultural assimilation and internal changes in cultures. The Journal of Conflict Resolution, 47(2), 163–179.
Google Scholar
Pineda, M., Toral, R., & Hernandez-Garcia, E. (2009). Noisy continuous-opinion dynamics. Journal of Statistical Mechanics-Theory and Experiment, P08001.
Rogers, E. M. (1995). Diffusion of innovations. New York: Free Press.
Google Scholar
Roux, V. (2013). Spreading of innovative technical traits and cumulative technical evolution: continuity or discontinuity? Journal of Archaeological Method and Theory, 20(2), 312–330.
Google Scholar
Roux, V., Bril, B., Cauliez, J., Goujon, A., Lara, C., Manen, C., de Saulieu, G., & Zangato, E. (2017). Persisting technological boundaries: Social interactions, cognitive correlations and polarization. Journal of Anthropological Archaeology, 48, 320–335.
Google Scholar
Sherif, M., Sherif, C. W. (1979). Research on intergroup relations. In: W. G. Austin, S. Worchel. The Social Psychology of Intergroup Relations (pp. 7–18), Monterey: Brooks/Cole Publishing Company.
Google Scholar
Shibanai, Y., Yasuno, S., & Ishiguro, I. (2001). Effects of global information feedback on diversity: extensions to Axelrod’s adaptive culture model. Journal of Conflict Resolution, 45(1), 80–96.
Google Scholar
Smith, E. R., & Conrey, F. R. (2007). Agent-based modeling: a new approach for theory building in social psychology. Personality and Social Psychology Review, 11(1), 87–104.
Google Scholar
Sobkowicz, P. (2009). Modelling opinion formation with physics tools: call for closer link with reality. Journal of Artificial Societies and Social Simulation, 12(1) (http://jasss.soc.surrey.ac.uk/12/1/11.html).
Stark, M. T. (1998). The archaeology of social boundaries. (M. T. Stark, Ed.). London: Smithsonian Institution Press.
Takács, K., Flache, A., & Mäs, M. (2016). Discrepancy and disliking do not induce negative opinion shifts. PLoS One, 11(6), e0157948. https://doi.org/10.1371/journal.pone.0157948.
Article
Google Scholar
Ulloa, R., Kacperski, C., & Sancho, F. (2016). Institutions and cultural diversity: Effects of democratic and propaganda processes on local convergence and global diversity. PLoS One, 11(4), e0153334. https://doi.org/10.1371/journal.pone.0153334.
Article
Google Scholar
Valente, T. W. (1996). Social network thresholds in the diffusion of innovations. Social Networks, 18(1), 69–89.
Google Scholar
Vinokur, A., & Burnstein, E. (1978). Depolarization of attitudes in groups. Journal of Personality and Social Psychology, 36(8), 872–885.
Google Scholar
Watts, D. J. (1999). Network dynamics and the small-world phenomenon. American Journal of Sociology, 105(2), 493–527.
Google Scholar
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks. Nature, 393(6684), 440–442.
Google Scholar
Wimmer, A., & Lewis, K. (2010). Beyond and below racial homophily: ERG models of a friendship network documented on Facebook. American Journal of Sociology, 116(2), 583–642.
Google Scholar
Wood, W. (2000). Attitude change: persuasion and social influence. Annual Review of Psychology, 51(1), 539–570.
Google Scholar
Wurzer, G., Kowarik, K., & Reschreiter, H. (Eds.). (2015). Agent-based modeling and simulation in archaeology. New York: Springer International Publishing.
Google Scholar