Skip to main content
Log in

Construction of hub transcription factor–microRNAs–messenger RNA regulatory network in recurrent implantation failure

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Recurrent implantation failure (RIF) affects up to 10% of in vitro fertilization (IVF) patients worldwide. However, the pathogenesis of RIF remains unclear. This study was aimed at identifying hub transcription factors (TFs) of RIF in bioinformatics approaches.

Methods

The GSE111974 (mRNA), GSE71332 (miRNA), and GSE103465 (mRNA) datasets were downloaded from the Gene Expression Omnibus database from human endometrial tissue using R version 4.2.1 and used to identify differentially expressed TFs (DETFs), differentially expressed miRNAs, and differentially expressed genes for RIF, respectively. DETFs were subjected to functional enrichment analysis and the protein–protein interaction network analysis using the Search Tool for the Retrieval of Interacting Genes (version 11.5) database. Hub TFs were identified using the cytoHubb plug-in, after which a hub TF–miRNA–mRNA network was constructed using Cytoscape v3.8.2.

Results

Fifty-seven DETFs were identified, in which Gene Ontology analysis revealed to be mainly involved in the regulation of transcription. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that DETFs were enriched in transcriptional misregulation in cancer, aldosterone synthesis and secretion, AMPK signaling pathway, and cGMP-PKG signaling pathway. EOMES, NKX2-1, and POU5F1 were identified as hub TFs, and a hub TF–miRNA–mRNA regulatory network was constructed using these three hub TFs, four miRNAs, and four genes.

Conclusion

Collectively, we identified three promising molecular biomarkers for the diagnosis of RIF, which may further be potential therapeutic targets. This study provides novel insights into the molecular mechanisms underlying RIF. However, further experiments are required to verify these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

References

  1. Busnelli A, Reschini M, Cardellicchio L, Vegetti W, Somigliana E, Vercellini P. How common is real repeated implantation failure? An indirect estimate of the prevalence. Reprod Biomed Online. 2020;40(1):91–7. https://doi.org/10.1016/j.rbmo.2019.10.014.

    Article  PubMed  Google Scholar 

  2. Cimadomo D, Craciunas L, Vermeulen N, Vomstein K, Toth B. Definition, diagnostic and therapeutic options in recurrent implantation failure: an international survey of clinicians and embryologists. Hum Reprod. 2021;36(2):305–17. https://doi.org/10.1093/humrep/deaa317.

    Article  CAS  PubMed  Google Scholar 

  3. Boija A, Klein IA, Sabari BR, Dall’Agnese A, Coffey EL, Zamudio AV, et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell. 2018;175(7):1842-55.e16. https://doi.org/10.1016/j.cell.2018.10.042.

    Article  CAS  PubMed  Google Scholar 

  4. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172(4):650–65. https://doi.org/10.1016/j.cell.2018.01.029.

    Article  CAS  PubMed  Google Scholar 

  5. Yang Z, Wang L. Regulation of microRNA expression and function by nuclear receptor signaling. Cell Biosci. 2011;1(1):31. https://doi.org/10.1186/2045-3701-1-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev. 2004;18(5):504–11. https://doi.org/10.1101/gad.1184404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shang J, Cheng YF, Li M, Wang H, Zhang JN, Guo XM, et al. Identification of key endometrial microRNAs and their target genes associated with pathogenesis of recurrent implantation failure by integrated bioinformatics analysis. Front Genet. 2022;13:919301. https://doi.org/10.3389/fgene.2022.919301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen P, Li T, Guo Y, Jia L, Wang Y, Fang C. Construction of circulating microRNAs-based non-invasive prediction models of recurrent implantation failure by network analysis. Front Genet. 2021;12:712150. https://doi.org/10.3389/fgene.2021.712150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azhari F, Pence S, Hosseini MK, Balci BK, Cevik N, Bastu E, et al. The role of the serum exosomal and endometrial microRNAs in recurrent implantation failure. J Matern Fetal Neonatal Med. 2022;35(5):815–25. https://doi.org/10.1080/14767058.2020.1849095.

    Article  CAS  PubMed  Google Scholar 

  10. Luo J, Zhu L, Zhou N, Zhang Y, Zhang L, Zhang R. Construction of circular RNA-microRNA-messenger RNA regulatory network of recurrent implantation failure to explore its potential pathogenesis. Front Genet. 2020;11:627459. https://doi.org/10.3389/fgene.2020.627459.

    Article  CAS  PubMed  Google Scholar 

  11. Ahmadi M, Pashangzadeh S, Moraghebi M, Sabetian S, Shekari M, Eini F, et al. Construction of circRNA-miRNA-mRNA network in the pathogenesis of recurrent implantation failure using integrated bioinformatics study. J Cell Mol Med. 2022;26(6):1853–64. https://doi.org/10.1111/jcmm.16586.

    Article  CAS  PubMed  Google Scholar 

  12. Bastu E, Demiral I, Gunel T, Ulgen E, Gumusoglu E, Hosseini MK, et al. Potential marker pathways in the endometrium that may cause recurrent implantation failure. Reprod Sci. 2019;26(7):879–90. https://doi.org/10.1177/1933719118792104.

    Article  CAS  PubMed  Google Scholar 

  13. Shi C, Shen H, Fan LJ, Guan J, Zheng XB, Chen X, et al. Endometrial microRNA signature during the window of implantation changed in patients with repeated implantation failure. Chin Med J (Engl). 2017;130(5):566–73. https://doi.org/10.4103/0366-6999.200550.

    Article  CAS  PubMed  Google Scholar 

  14. Guo F, Si C, Zhou M, Wang J, Zhang D, Leung PCK, et al. Decreased PECAM1-mediated TGF-beta1 expression in the mid-secretory endometrium in women with recurrent implantation failure. Hum Reprod. 2018;33(5):832–43. https://doi.org/10.1093/humrep/dey022.

    Article  CAS  PubMed  Google Scholar 

  15. Hu H, Miao YR, Jia LH, Yu QY, Zhang Q, Guo AY. AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019;47(D1):D33–8. https://doi.org/10.1093/nar/gky822.

    Article  CAS  PubMed  Google Scholar 

  16. Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158(6):1431–43. https://doi.org/10.1016/j.cell.2014.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46. https://doi.org/10.1093/nar/gkac1000.

    Article  CAS  PubMed  Google Scholar 

  18. Tong Z, Cui Q, Wang J, Zhou Y. TransmiR v2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019;47(D1):D253–8. https://doi.org/10.1093/nar/gky1023.

    Article  CAS  PubMed  Google Scholar 

  19. Montaldo E, Vacca P, Chiossone L, Croxatto D, Loiacono F, Martini S, et al. Unique Eomes(+) NK cell subsets are present in uterus and decidua during early pregnancy. Front Immunol. 2015;6:646. https://doi.org/10.3389/fimmu.2015.00646.

    Article  PubMed  Google Scholar 

  20. Kiekens L, Van Loocke W, Taveirne S, Wahlen S, Persyn E, Van Ammel E, et al. T-BET and EOMES accelerate and enhance functional differentiation of human natural killer cells. Front Immunol. 2021;12:732511. https://doi.org/10.3389/fimmu.2021.732511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen L, Li M, Sun F, Qian J, Du M, Wang S, et al. Eomesodermin regulate decidual CD4(+)T cell function during human early pregnancy. J Reprod Immunol. 2021;146:103290. https://doi.org/10.1016/j.jri.2021.103290.

    Article  CAS  PubMed  Google Scholar 

  22. Chen L, Sun F, Li M, Qian J, Du M, Li D, et al. Decreased level of Eomes+dCD8+ T cells with altered function might be associated with miscarriage. Reproduction. 2021;162(2):107–15. https://doi.org/10.1530/REP-20-0639.

    Article  CAS  PubMed  Google Scholar 

  23. Probst S, Arnold SJ. Eomesodermin-at dawn of cell fate decisions during early embryogenesis. Curr Top Dev Biol. 2017;122:93–115. https://doi.org/10.1016/bs.ctdb.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  24. Lai ZZ, Wang Y, Zhou WJ, Liang Z, Shi JW, Yang HL, et al. Single-cell transcriptome profiling of the human endometrium of patients with recurrent implantation failure. Theranostics. 2022;12(15):6527–47. https://doi.org/10.7150/thno.74053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bakhmet EI, Tomilin AN. Key features of the POU transcription factor Oct4 from an evolutionary perspective. Cell Mol Life Sci. 2021;78(23):7339–53. https://doi.org/10.1007/s00018-021-03975-8.

    Article  CAS  PubMed  Google Scholar 

  26. Hu J, Yuan R. Decreased expression of c-kit and telomerase in a rat model of chronic endometrial ischemia. Med Sci Monit. 2011;17(4):BR103-9. https://doi.org/10.12659/msm.881710.

    Article  PubMed  Google Scholar 

  27. Liu H, Deng S, Zhao Z, Zhang H, Xiao J, Song W, et al. Oct4 regulates the miR-302 cluster in P19 mouse embryonic carcinoma cells. Mol Biol Rep. 2011;38(3):2155–60. https://doi.org/10.1007/s11033-010-0343-4.

    Article  CAS  PubMed  Google Scholar 

  28. Wang YD, Cai N, Wu XL, Cao HZ, Xie LL, Zheng PS. OCT4 promotes tumorigenesis and inhibits apoptosis of cervical cancer cells by miR-125b/BAK1 pathway. Cell Death Dis. 2013;4:e760. https://doi.org/10.1038/cddis.2013.272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minocha S, Valloton D, Arsenijevic Y, Cardinaux JR, Guidi R, Hornung JP, et al. Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development. Sci Rep. 2017;7:43093. https://doi.org/10.1038/srep43093.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wen B, Li E, Ustiyan V, Wang G, Guo M, Na CL, et al. In vivo generation of lung and thyroid tissues from embryonic stem cells using blastocyst complementation. Am J Respir Crit Care Med. 2021;203(4):471–83. https://doi.org/10.1164/rccm.201909-1836OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tagne JB, Mohtar OR, Campbell JD, Lakshminarayanan M, Huang J, Hinds AC, et al. Transcription factor and microRNA interactions in lung cells: an inhibitory link between NK2 homeobox 1, miR-200c and the developmental and oncogenic factors Nfib and Myb. Respir Res. 2015;16:22. https://doi.org/10.1186/s12931-015-0186-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ponsuksili S, Tesfaye D, Schellander K, Hoelker M, Hadlich F, Schwerin M, et al. Differential expression of miRNAs and their target mRNAs in endometria prior to maternal recognition of pregnancy associates with endometrial receptivity for in vivo- and in vitro-produced bovine embryos. Biol Reprod. 2014;91(6):135. https://doi.org/10.1095/biolreprod.114.121392.

    Article  CAS  PubMed  Google Scholar 

  33. Shi S, Tan Q, Liang J, Cao D, Wang S, Liang J, et al. Placental trophoblast cell-derived exosomal microRNA-1290 promotes the interaction between endometrium and embryo by targeting LHX6. Mol Ther Nucleic Acids. 2021;26:760–72. https://doi.org/10.1016/j.omtn.2021.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blagden SP, Gatt MK, Archambault V, Lada K, Ichihara K, Lilley KS, et al. Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Dev Biol. 2009;334(1):186–97. https://doi.org/10.1016/j.ydbio.2009.07.016.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Ashtal HA, Rubottom CM, Leeper TC, Berman AJ. The LARP1 La-Module recognizes both ends of TOP mRNAs. RNA Biol. 2021;18(2):248–58. https://doi.org/10.1080/15476286.2019.1669404.

    Article  CAS  PubMed  Google Scholar 

  36. Hug C, Miller TM, Torres MA, Casella JF, Cooper JA. Identification and characterization of an actin-binding site of CapZ. J Cell Biol. 1992;116(4):923–31. https://doi.org/10.1083/jcb.116.4.923.

    Article  CAS  PubMed  Google Scholar 

  37. Alshaker H, Wang Q, Brewer D, Pchejetski D. Transcriptome-wide effects of sphingosine kinases knockdown in metastatic prostate and breast cancer cells: implications for therapeutic targeting. Front Pharmacol. 2019;10:303. https://doi.org/10.3389/fphar.2019.00303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim SJ, Lee SY, Lee C, Kim I, An HJ, Kim JY, et al. Differential expression profiling of genes in a complete hydatidiform mole using cDNA microarray analysis. Gynecol Oncol. 2006;103(2):654–60. https://doi.org/10.1016/j.ygyno.2006.05.015.

    Article  CAS  PubMed  Google Scholar 

  39. Martinsson-Ahlzen HS, Liberal V, Grunenfelder B, Chaves SR, Spruck CH, Reed SI. Cyclin-dependent kinase-associated proteins Cks1 and Cks2 are essential during early embryogenesis and for cell cycle progression in somatic cells. Mol Cell Biol. 2008;28(18):5698–709. https://doi.org/10.1128/MCB.01833-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ellederova Z, Del Rincon S, Koncicka M, Susor A, Kubelka M, Sun D, et al. CKS1 germ line exclusion is essential for the transition from meiosis to early embryonic development. Mol Cell Biol. 2019;39(13). https://doi.org/10.1128/MCB.00590-18

  41. Kang MA, Kim JT, Kim JH, Kim SY, Kim YH, Yeom YI, et al. Upregulation of the cycline kinase subunit CKS2 increases cell proliferation rate in gastric cancer. J Cancer Res Clin Oncol. 2009;135(6):761–9. https://doi.org/10.1007/s00432-008-0510-3.

    Article  CAS  PubMed  Google Scholar 

  42. Shen DY, Zhan YH, Wang QM, Rui G, Zhang ZM. Oncogenic potential of cyclin kinase subunit-2 in cholangiocarcinoma. Liver Int. 2013;33(1):137–48. https://doi.org/10.1111/liv.12014.

    Article  CAS  PubMed  Google Scholar 

  43. Huberts DH, van der Klei IJ. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta. 2010;1803(4):520–5. https://doi.org/10.1016/j.bbamcr.2010.01.022.

    Article  CAS  PubMed  Google Scholar 

  44. Liu J, Wang Y, Chen P, Ma Y, Wang S, Tian Y, et al. AC002454 1 and CDK6 synergistically promote endometrial cell migration and invasion in endometriosis. Reproduction. 2019;157(6):535–43. https://doi.org/10.1530/REP-19-0005.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This manuscript was supported by the National Natural Science Foundation of China (grant number 81860271 and 82160281), Yunnan Ten Thousand Talents Program for Famous Doctors and Masters (grant number Yunwei Renfa [2019] No. 35), Yunnan Support Program of High Level Talents Cultivation Famous Medical Project (grant number RLMY20200017), Fundamental Research Joint Project of Local Undergraduate Universities in Yunnan Province (grant number 2020D1BA07000), Yunnan Provincial Clinical Medical Center for Reproductive Obstetrics and Gynecology (grant number zx209-01-01), Open Subject of Yunnan Clinical Medical Center for Reproductive and Maternal Diseases (grant number 2019LCZXKF-SZ04), Dali Science and Technology Planning Project (grant numbers 2021085 and 2021086), and Open Program of Clinical Medical Center of First People’s Hospital of Yunnan Province (2022LCZXKF-SZ13).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JL, RH, and PX. Formal analysis: AX, ZD, LZ, RW, YQ, and LZ. Methodology: RH, PX, AX, ZD, LZ, RW, YQ, and LZ. Software: JL, AX, and ZD. Supervision: RZ and LT. Writing—original draft, JL, RH, and PX. Writing—review and editing: LZ, RZ, and LT. Project administration: RZ and LT. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li Zhu, Ruopeng Zhang or Li Tang.

Ethics declarations

Ethics approval

Publicly available datasets were analyzed in this study, so ethical review, approval, and written informed consent for participation were not required for the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(CSV 134 kb)

ESM 2

(XLSX 8.60 kb)

ESM 3

(XLSX 8.90 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Huang, R., Xiao, P. et al. Construction of hub transcription factor–microRNAs–messenger RNA regulatory network in recurrent implantation failure. J Assist Reprod Genet 41, 3–13 (2024). https://doi.org/10.1007/s10815-023-02947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02947-0

Keywords

Navigation