Skip to main content
Log in

Efficacy and safety of papaverine as an in vitro motility enhancer on human spermatozoa

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to examine the ability and safety of papaverine supplementation for in vitro sperm motility enhancement. In addition, sperm motility enhancement of papaverine was compared to pentoxifylline and theophylline. The post-thaw spermatozoa were used as an asthenozoospermia model.

Methods

Post thaw sperm suspensions were divided into two groups: papaverine (100 μmol/L) and control, and each was investigated in two subgroups of 30- and 60-min exposure times. Detailed motility parameters were detected using a computerized sperm motility analyzer. Acrosomal status, viability, apoptosis, and DNA fragmentation were evaluated by flow cytometry. Furthermore, the motility-enhancing capacity of papaverine, pentoxifylline, and theophylline was compared.

Results

Cryopreservation impaired sperm parameters dramatically but no significant changes occurred in acrosomal status and apoptosis. Supplementation of papaverine enhanced motility parameters consistently at all exposure intervals, significantly. However, viability was lower at the 60th minute compared to the 30th minute (p=0.019). Papaverine did not alter any acrosomal or apoptotic markers at any time points. All of the compounds compared in this study increased the motility parameters, where theophylline supplementation provided significantly better improvement in total motility compared to papaverine and pentoxifylline.

Conclusion

Our results suggest that in vitro papaverine treatment for 30 min adequately improves motility of post-thaw sperm, without leading to acrosome reaction, DNA damage, and viability loss. Theophylline’s potency on increasing the ratio of total motile spermatozoa was found significantly superior than the two tested compounds. Prospective clinical studies with embryo production, pregnancy, and live birth data should be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data obtained in this manuscript is available

References

  1. Ebner T, Shebl O, Mayer RB, Moser M, Costamoling W, Oppelt P. Healthy live birth using theophylline in a case of retrograde ejaculation and absolute asthenozoospermia. Fertil Steril. 2014;101(2):340–3. https://doi.org/10.1016/j.fertnstert.2013.10.006.

    Article  PubMed  Google Scholar 

  2. Ebner T, Tews G, Mayer RB, Ziehr S, Arzt W, Costamoling W, et al. Pharmacological stimulation of sperm motility in frozen and thawed testicular sperm using the dimethylxanthine theophylline. Fertil Steril. 2011;96(6):1331–6. https://doi.org/10.1016/j.fertnstert.2011.08.041.

    Article  CAS  PubMed  Google Scholar 

  3. Yovich JM, Edirisinghe WR, Cummins JM, Yovich JL. Influence of pentoxifylline in severe male factor infertility. Fertil Steril. 1990;53(4):715–22.

    Article  CAS  Google Scholar 

  4. Matson PL, Yovich JM, Edirisinghe WR, Junk SM, Yovich JL. An argument for the past and continued use of pentoxifylline in assisted reproductive technology. Hum Reprod. 1995;10(Suppl 1):67–71. https://doi.org/10.1093/humrep/10.suppl_1.67.

    Article  CAS  PubMed  Google Scholar 

  5. Negri P, Grechi E, Tomasi A, Fabbri E, Capuzzo A. Effectiveness of pentoxifylline in semen preparation for intrauterine insemination. Hum Reprod. 1996;11(6):1236–9. https://doi.org/10.1093/oxfordjournals.humrep.a019363.

    Article  CAS  PubMed  Google Scholar 

  6. Aribarg A, Sukcharoen N, Jetsawangsri U, Chanprasit Y, Ngeamvijawat J. Effects of pentoxifylline on sperm motility characteristics and motility longevity of postthaw cryopreserved semen using computer-assisted semen analysis (CASA). J Med Assoc Thail. 1994;77(2):71–5.

    CAS  Google Scholar 

  7. Kovacic B, Vlaisavljevic V, Reljic M. Clinical use of pentoxifylline for activation of immotile testicular sperm before ICSI in patients with azoospermia. J Androl. 2006;27(1):45–52. https://doi.org/10.2164/jandrol.05079.

    Article  CAS  PubMed  Google Scholar 

  8. Yildirim G, Ficicioglu C, Akcin O, Attar R, Tecellioglu N, Yencilek F. Can pentoxifylline improve the sperm motion and ICSI success in the primary ciliary dyskinesia? Arch Gynecol Obstet. 2009;279(2):213–5. https://doi.org/10.1007/s00404-008-0671-y.

    Article  PubMed  Google Scholar 

  9. Nassar A, Mahony M, Morshedi M, Lin MH, Srisombut C, Oehninger S. Modulation of sperm tail protein tyrosine phosphorylation by pentoxifylline and its correlation with hyperactivated motility. Fertil Steril. 1999;71(5):919–23.

    Article  CAS  Google Scholar 

  10. Stanic P, Sonicki Z, Suchanek E. Effect of pentoxifylline on motility and membrane integrity of cryopreserved human spermatozoa. Int J Androl. 2002;25(3):186–90.

    Article  CAS  Google Scholar 

  11. Nabi A, Khalili MA, Fesahat F, Talebi A, Ghasemi-Esmailabad S. Pentoxifylline increase sperm motility in devitrified spermatozoa from asthenozoospermic patient without damage chromatin and DNA integrity. Cryobiology. 2017;76:59–64. https://doi.org/10.1016/j.cryobiol.2017.04.008.

    Article  CAS  PubMed  Google Scholar 

  12. Grassi G, Cappello N, Gheorghe MF, Salton L, Di Bisceglie C, Manieri C, et al. Exogenous platelet-activating factor improves the motility of human spermatozoa evaluated with C.A.S.A.: optimal concentration and incubation time. J Endocrinol Investig. 2010;33(10):684–90. https://doi.org/10.1007/bf03346670.

    Article  CAS  Google Scholar 

  13. Barakat IA, Danfour MA, Galewan FA, Dkhil MA. Effect of various concentrations of caffeine, pentoxifylline, and kallikrein on hyperactivation of frozen bovine semen. Biomed Res Int. 2015;2015:948575–7. https://doi.org/10.1155/2015/948575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rees JM, Ford WC, Hull MG. Effect of caffeine and of pentoxifylline on the motility and metabolism of human spermatozoa. J Reprod Fertil. 1990;90(1):147–56. https://doi.org/10.1530/jrf.0.0900147.

    Article  CAS  PubMed  Google Scholar 

  15. Ortgies F, Klewitz J, Gorgens A, Martinsson G, Sieme H. Effect of procaine, pentoxifylline and trolox on capacitation and hyperactivation of stallion spermatozoa. Andrologia. 2012;44(Suppl 1):130–8. https://doi.org/10.1111/j.1439-0272.2010.01150.x.

    Article  CAS  PubMed  Google Scholar 

  16. Nekoonam S, Nashtaei MS. naji M, Zangi BM, Amidi F. Effect of Trolox on sperm quality in normozospermia and oligozospermia during cryopreservation. Cryobiology. 2016;72(2):106–11. https://doi.org/10.1016/j.cryobiol.2016.02.008.

    Article  CAS  PubMed  Google Scholar 

  17. Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction. 2001;122(4):519–26.

    Article  CAS  Google Scholar 

  18. Glenn DR, McVicar CM, McClure N, Lewis SE. Sildenafil citrate improves sperm motility but causes a premature acrosome reaction in vitro. Fertil Steril. 2007;87(5):1064–70. https://doi.org/10.1016/j.fertnstert.2006.11.017.

    Article  CAS  PubMed  Google Scholar 

  19. Tournaye H, Van der Linden M, Van den Abbeel E, Devroey P, Van Steirteghem A. Effects of pentoxifylline on in-vitro development of preimplantation mouse embryos. Hum Reprod. 1993;8(9):1475–80.

    Article  CAS  Google Scholar 

  20. Centola GM, Cartie RJ, Cox C. Differential responses of human sperm to varying concentrations of pentoxyfylline with demonstration of toxicity. J Androl. 1995;16(2):136–42.

    CAS  PubMed  Google Scholar 

  21. Robaire B, Hinton B, Orgebin-Crist M. Knobil and Neill’s physiology of reproduction. In: Neill JD, editor. Physiology of Reproduction. 3rd ed. New York: Elsevier; 2006.

    Google Scholar 

  22. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science. 2000;289(5479):625–8. https://doi.org/10.1126/science.289.5479.625.

    Article  CAS  PubMed  Google Scholar 

  23. Drobnis EZ, Nangia AK. Phosphodiesterase inhibitors (PDE inhibitors) and male reproduction. Adv Exp Med Biol. 2017;1034:29–38. https://doi.org/10.1007/978-3-319-69535-8_5.

    Article  PubMed  Google Scholar 

  24. Ain R, Uma Devi K, Shivaji S, Seshagiri PB. Pentoxifylline-stimulated capacitation and acrosome reaction in hamster spermatozoa: involvement of intracellular signalling molecules. Mol Hum Reprod. 1999;5(7):618–26. https://doi.org/10.1093/molehr/5.7.618.

    Article  CAS  PubMed  Google Scholar 

  25. Bergeron A, Hebert A, Guillemette C, Laroche A, Poulin MP, Aragon JP, et al. Papaverine-sensitive phosphodiesterase activity is measured in bovine spermatozoa. Andrology. 2017;5(1):169–79. https://doi.org/10.1111/andr.12290.

    Article  CAS  PubMed  Google Scholar 

  26. Marechal L, Guillemette C, Goupil S, Blondin P, Leclerc P, Richard FJ. Cyclic nucleotide phosphodiesterases in human spermatozoa and seminal fluid: presence of an active PDE10A in human spermatozoa. Biochim Biophys Acta. 2017;1861(2):147–56. https://doi.org/10.1016/j.bbagen.2016.11.006.

    Article  CAS  Google Scholar 

  27. Mooradian AD, Morley JE, Kaiser FE, Davis SS, Viosca SP, Korenman SC. Biweekly intracavernous administration of papaverine for erectile dysfunction. W J Med. 1989;151(5):515–7.

    CAS  Google Scholar 

  28. Tardif S, Madamidola OA, Brown SG, Frame L, Lefièvre L, Wyatt PG, et al. Clinically relevant enhancement of human sperm motility using compounds with reported phosphodiesterase inhibitor activity. Hum Reprod. 2014;29(10):2123–35. https://doi.org/10.1093/humrep/deu196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamada A, Wasik M, Gupta S, Agarwal A. Sperm banking: indications and regulations. 2014.

    Google Scholar 

  30. Ozkavukcu S, Erdemli E, Isik A, Oztuna D, Karahuseyinoglu S. Effects of cryopreservation on sperm parameters and ultrastructural morphology of human spermatozoa. J Assist Reprod Genet. 2008;25(8):403–11. https://doi.org/10.1007/s10815-008-9232-3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Donovan A, Hanrahan JP, Kummen E, Duffy P, Boland MP. Fertility in the ewe following cervical insemination with fresh or frozen-thawed semen at a natural or synchronised oestrus. Anim Reprod Sci. 2004;84(3-4):359–68. https://doi.org/10.1016/j.anireprosci.2003.12.014.

    Article  CAS  PubMed  Google Scholar 

  32. Agnihotri SK, Agrawal AK, Hakim BA, Vishwakarma AL, Narender T, Sachan R, et al. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev Biol Anim. 2016;52(9):953–60. https://doi.org/10.1007/s11626-016-0061-x.

    Article  CAS  PubMed  Google Scholar 

  33. WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed; 2010.

    Google Scholar 

  34. Punyatanasakchai P, Sophonsritsuk A, Weerakiet S, Wansumrit S, Chompurat D. Comparison of cryopreserved human sperm in vapor and liquid phases of liquid nitrogen: effect on motility parameters, morphology, and sperm function. Fertil Steril. 2008;90(5):1978–82. https://doi.org/10.1016/j.fertnstert.2007.09.066.

    Article  PubMed  Google Scholar 

  35. Ormerod MG. The study of apoptotic cells by flow cytometry. Leukemia. 1998;12(7):1013–25. https://doi.org/10.1038/sj.leu.2401061.

    Article  CAS  PubMed  Google Scholar 

  36. Lewis SE, McKinney KA, Thompson W. Influence of pentoxifylline on human sperm motility in asthenozoospermic individuals using computer-assisted analysis. Arch Androl. 1994;32(3):175–83.

    Article  CAS  Google Scholar 

  37. Terriou P, Hans E, Cortvrindt R, Avon C, Charles O, Salzmann J, et al. Papaverine as a replacement for pentoxifylline to select thawed testicular or epididymal spermatozoa before ICSI. Gynecol Obstet Fertil. 2015;43(12):786–90. https://doi.org/10.1016/j.gyobfe.2015.10.007.

    Article  CAS  PubMed  Google Scholar 

  38. Palermo G, Joris H, Devroey P, Van Steirteghem AC. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  CAS  Google Scholar 

  39. Nagy Z, Liu J, Cecile J, Silber S, Devroey P, Van Steirteghem A. Using ejaculated, fresh, and frozen-thawed epididymal and testicular spermatozoa gives rise to comparable results after intracytoplasmic sperm injection. Fertil Steril. 1995;63(4):808–15.

    Article  CAS  Google Scholar 

  40. Imoedemhe DA, Sigue AB, Pacpaco EL, Olazo AB. The effect of caffeine on the ability of spermatozoa to fertilize mature human oocytes. J Assist Reprod Genet. 1992;9(2):155–60.

    Article  CAS  Google Scholar 

  41. Maxwell WM, Robinson SJ, Roca J, Molinia FC, Sanchez-Partida LG, Evans G. Motility, acrosome integrity and fertility of frozen ram spermatozoa treated with caffeine, pentoxifylline, cAMP, 2-deoxyadenosine and kallikrein. Reprod Fertil Dev. 1995;7(5):1081–7.

    Article  CAS  Google Scholar 

  42. Milani C, Fontbonne A, Sellem E, Stelletta C, Gerard O, Romagnoli S. Effect of post-thaw dilution with caffeine, pentoxifylline, 2′-deoxyadenosine and prostatic fluid on motility of frozen-thawed dog semen. Theriogenology. 2010;74(1):153–64. https://doi.org/10.1016/j.theriogenology.2010.01.026.

    Article  CAS  PubMed  Google Scholar 

  43. Tesarik J, Mendoza C, Carreras A. Effects of phosphodiesterase inhibitors caffeine and pentoxifylline on spontaneous and stimulus-induced acrosome reactions in human sperm. Fertil Steril. 1992;58(6):1185–90.

    Article  CAS  Google Scholar 

  44. Francis SH, Houslay MD, Conti M. Phosphodiesterase inhibitors: factors that influence potency, selectivity, and action. Handb Exp Pharmacol. 2011;204:47–84. https://doi.org/10.1007/978-3-642-17969-3_2.

    Article  CAS  Google Scholar 

  45. Tournaye H, Janssens R, Verheyen G, Camus M, Devroey P, Van Steirteghem A. An indiscriminate use of pentoxifylline does not improve in-vitro fertilization in poor fertilizers. Hum Reprod. 1994;9(7):1289–92.

    Article  CAS  Google Scholar 

  46. Yovich JL. Pentoxifylline: actions and applications in assisted reproduction. Hum Reprod. 1993;8(11):1786–91. https://doi.org/10.1093/oxfordjournals.humrep.a137935.

    Article  CAS  PubMed  Google Scholar 

  47. Wang R, Bell M, Hellstrom WJ, Sikka SC. Post-thaw sperm motility, cAMP concentration and membrane lipid peroxidation after stimulation with pentoxifylline and platelet-activating factor. Int J Androl. 1994;17(4):169–73.

    Article  CAS  Google Scholar 

  48. Larsen L, Scheike T, Jensen TK, Bonde JP, Ernst E, Hjollund NH, et al. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. The Danish First Pregnancy Planner Study Team. Hum Reprod. 2000;15(7):1562–7. https://doi.org/10.1093/humrep/15.7.1562.

    Article  CAS  PubMed  Google Scholar 

  49. Morales P, Llanos M, Yovich JL, Cummins JM, Vigil P. Pentoxifylline increases sperm penetration into zona-free hamster oocytes without increasing the acrosome reaction. Andrologia. 1993;25(6):359–62. https://doi.org/10.1111/j.1439-0272.1993.tb02743.x.

    Article  CAS  PubMed  Google Scholar 

  50. Tasdemir M, Tasdemir I, Kodama H, Tanaka T. Pentoxifylline-enhanced acrosome reaction correlates with fertilization in vitro. Hum Reprod. 1993;8(12):2102–7.

    Article  CAS  Google Scholar 

  51. Kay VJ, Coutts JR, Robertson L. Effects of pentoxifylline and progesterone on human sperm capacitation and acrosome reaction. Hum Reprod. 1994;9(12):2318–23. https://doi.org/10.1093/oxfordjournals.humrep.a138445.

    Article  CAS  PubMed  Google Scholar 

  52. Fisch JD, Behr B, Conti M. Enhancement of motility and acrosome reaction in human spermatozoa: differential activation by type-specific phosphodiesterase inhibitors. Hum Reprod. 1998;13(5):1248–54.

    Article  CAS  Google Scholar 

  53. Hammadeh ME, Askari AS, Georg T, Rosenbaum P, Schmidt W. Effect of freeze-thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int J Androl. 1999;22(3):155–62.

    Article  CAS  Google Scholar 

  54. Kim SH, Yu DH, Kim YJ. Effects of cryopreservation on phosphatidylserine translocation, intracellular hydrogen peroxide, and DNA integrity in canine sperm. Theriogenology. 2010;73(3):282–92. https://doi.org/10.1016/j.theriogenology.2009.09.011.

    Article  CAS  PubMed  Google Scholar 

  55. Alvarez JG, Storey BT. Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J Androl. 1992;13(3):232–41.

    CAS  PubMed  Google Scholar 

  56. Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69(3):528–32. https://doi.org/10.1016/s0015-0282(97)00536-0.

    Article  CAS  PubMed  Google Scholar 

  57. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14(4):1039–49. https://doi.org/10.1093/humrep/14.4.1039.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta S, Sekhon LH, Agarwal A, editors. Sperm banking: when, why, and how? 2011.

    Google Scholar 

Download references

Code availability

Text has been prepared using Microsoft Word application

Author information

Authors and Affiliations

Authors

Contributions

EI was involved in the sample collection, acquisition of data, patient’s enrollment, follow-up, and drafting of the article. SH performed statistical analysis. EB was involved in the interpretation of data, critical revision for important intellectual content, and drafting of the article. NG performed the design and interpretation of data. SO was involved in the conception, coordination and design of the study, acquisition of data, analysis, interpretation and critical revision of data, drafting of the article, and critical revision of the article for important intellectual content. All the authors performed the final approval of the version to be published.

Corresponding author

Correspondence to Sinan Ozkavukcu.

Ethics declarations

Ethics approval

The approval of the Ankara University Research Ethical Committee was gained (Approval number: 02-60-18. Date: 22.01.2018).

Consent to participate

All subjects were informed with signed consent form prior to inclusion to the study, and the tenets of Declaration of Helsinki were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 25 kb)

ESM 2

(DOCX 14 kb)

ESM 3

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibis, E., Hayme, S., Baysal, E. et al. Efficacy and safety of papaverine as an in vitro motility enhancer on human spermatozoa. J Assist Reprod Genet 38, 1523–1537 (2021). https://doi.org/10.1007/s10815-021-02160-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02160-x

Keywords

Navigation