Skip to main content
Log in

All roads lead to Rome: the many ways to pluripotency

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Cell pluripotency, spatial restriction, and development are spatially and temporally controlled by epigenetic regulatory mechanisms that occur without any permanent loss or alteration of genetic material, but rather through modifications “on top of it.” These changes modulate the accessibility to transcription factors, either allowing or repressing their activity, thus shaping cell phenotype. Several studies have demonstrated the possibility to interact with these processes, reactivating silenced genes and inducing a high plasticity state, via an active demethylating effect, driven by ten-eleven translocation (TET) enzymes and an overall decrease of global methylation. In agreement with this, TET activities have been shown to be indispensable for mesenchymal to epithelial transition of somatic cells into iPSCs and for small molecule-driven epigenetic erasure. Beside the epigenetic mechanisms, growing evidences highlight the importance of mechanical forces in supporting cell pluripotency, which is strongly influenced by 3D rearrangement and mechanical properties of the surrounding microenvironment, through the activation of specific mechanosensing-related pathways. In this review, we discuss and provide an overview of small molecule ability to modulate cell plasticity and define cell fate through the activation of direct demethylating effects. In addition, we describe the contribution of the Hippo signaling mechanotransduction pathway as one of the mechanisms involved in the maintenance of pluripotency during embryo development and its induction in somatic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swain PS, Elowitz MB, Siggia ED. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A. 2002;99:12795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell, 2007;128:635–8.

  3. Xie R, Everett LJ, Lim HW, Patel NA, Schug J, Kroon E, et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell. 2013;12:224–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol. 2009;10:526–37.

    Article  CAS  PubMed  Google Scholar 

  5. Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell. 2008;3:382–8.

    Article  CAS  PubMed  Google Scholar 

  6. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  7. Pennarossa G, Zenobi A, Gandolfi CEE, Manzoni EFMF, Gandolfi F, Brevini TALA. Erase and rewind: epigenetic conversion of cell fate. Stem Cell Rev. 2015;12:163–70.

    Article  CAS  Google Scholar 

  8. Choy MK, Movassagh M, Goh HG, Bennett MR, Down TA, Foo RS. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics. 2010;11:519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Spivakov M, Fisher AG. Epigenetic signatures of stem-cell identity. Nat Rev Genet. 2007;8:263–71.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu J, Adli M, Zou JY, Verstappen G, Coyne M, Zhang X, et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell. 2013;152:642–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jost D. Bifurcation in epigenetics: implications in development, proliferation, and diseases. Phys Rev E Stat Nonlinear Soft Matter Phys. 2014;89:10701.

    Article  CAS  Google Scholar 

  12. Shipony Z, Mukamel Z, Cohen NM, Landan G, Chomsky E, Zeliger SR, et al. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature. 2014;513:115–9.

    Article  CAS  PubMed  Google Scholar 

  13. Brevini TAL, Pennarossa G, Maffei S, Gandolfi F. Phenotype switching through epigenetic conversion. Reprod Fertil Dev. 2015;27.

  14. Sendžikaitė G, Kelsey G. The role and mechanisms of DNA methylation in the oocyte. Essays Biochem. 2019;63:691–705.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update. 2019;25:519–41.

    Article  Google Scholar 

  16. De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol. 2010;20:609–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958;182:64–5.

    Article  CAS  PubMed  Google Scholar 

  18. Gurdon JB. The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis. J Embryol Exp Morpholog. 1960;8:505–26.

    CAS  Google Scholar 

  19. Miller RA, Ruddle FH. Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell. 1976;9:45–55.

    Article  CAS  PubMed  Google Scholar 

  20. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000.

    Article  CAS  PubMed  Google Scholar 

  21. Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol. 2007;25:1177.

    Article  CAS  PubMed  Google Scholar 

  22. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science (80- ). 2008;322:949–53.

    Article  CAS  Google Scholar 

  23. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–76.

  24. Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2:3081–9.

    Article  CAS  PubMed  Google Scholar 

  25. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature. 2009;458:771–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, et al. A nonviral minicircle vector for deriving human iPS cells. Nat Methods. 2010;7:197–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y. Efficient feeder-free episomal reprogramming with small molecules. PLoS One. 2011;6:e17557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–4.

    Article  CAS  PubMed  Google Scholar 

  31. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H, Lau F, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–30.

  32. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8:376–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, et al. Reprogramming of mouse and human cells to pluripotency using mature MicroRNAs. Cell Stem Cell. 2011;8:633–8.

    Article  CAS  PubMed  Google Scholar 

  34. Hong SG, Dunbar CE, Winkler T. Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol Ther. 2013;21:272–81.

    Article  CAS  PubMed  Google Scholar 

  35. Taylor SM, Jones PA. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979;17:771–9.

    Article  CAS  PubMed  Google Scholar 

  36. Chandrakanthan V, Yeola A, Kwan JC, Oliver RA, Qiao Q, Kang YC, et al. PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci U S A. 2016;113:E2306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harris DM, Hazan-Haley I, Coombes K, Bueso-Ramos C, Liu J, Liu Z, et al. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One. 2011;6:e21250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mirakhori F, Zeynali B, Rassouli H, Salekdeh GH, Baharvand H. Direct conversion of human fibroblasts into dopaminergic neural progenitor-like cells using TAT-mediated protein transduction of recombinant factors. Biochem Biophys Res Commun. 2015;459:655–61.

    Article  CAS  PubMed  Google Scholar 

  39. Mirakhori F, Zeynali B, Kiani S, Baharvand H. Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J. 2015;17:153–8.

    PubMed  PubMed Central  Google Scholar 

  40. Pennarossa G, Maffei S, Campagnol M, Rahman MM, Brevini TAL, Gandolfi F. Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev Rep. 2014;10:31–43.

    Article  CAS  PubMed  Google Scholar 

  41. Brevini TAL, Pennarossa G, Acocella F, Brizzola S, Zenobi A, Gandolfi F. Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Vet J. 2016;211:52–6.

    Article  CAS  PubMed  Google Scholar 

  42. Brevini TAL, Pennarossa G, Maffei S, Zenobi A, Gandolfi F. Epigenetic conversion as a safe and simple method to obtain insulin-secreting cells from adult skin fibroblasts. J Vis Exp. 2016; (109). https://doi.org/10.3791/53880.

  43. Brevini TAL, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, et al. Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev Rep. 2014;10:633–42.

    Article  CAS  PubMed  Google Scholar 

  44. Pennarossa G, Santoro R, Manzoni EFM, Pesce M, Gandolfi F, Brevini TAL. Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Rev Reports. 2018;14:398–411.

  45. Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini TAL. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A. 2013;110:8948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen S, Zhang Q, Wu X, Schultz PG, Ding S. Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc. 2004;126:410–1.

    Article  CAS  PubMed  Google Scholar 

  47. Brevini TAL, Pennarossa G, Manzoni EFM, Zenobi A, Gandolfi F. Mountain high and valley deep: epigenetic controls of pluripotency and cell fate. Anim Reprod. 2017;14:61–68.

  48. Christman JK. 5-Azacytidine and 5-aza-2[prime]-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002;21:5483–95.

  49. Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13.

    Article  CAS  PubMed  Google Scholar 

  50. Jones PA. Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther. 1985;28:17–27.

    Article  CAS  PubMed  Google Scholar 

  51. Glover TW, Coyle-Morris J, Pearce-Birge L, Berger C, Gemmill RM. DNA demethylation induced by 5-azacytidine does not affect fragile X expression. Am J Hum Genet. 1986;38:309–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pennarossa G, Manzoni EFM, Ledda S, de Eguileor M, Gandolfi F, Brevini TAL. Use of a PTFE micro-bioreactor to promote 3D cell rearrangement and maintain high plasticity in epigenetically erased fibroblasts. Stem Cell Rev Rep. 2019;15:82–92.

    Article  CAS  PubMed  Google Scholar 

  53. Tamada H, Van Thuan N, Reed P, Nelson D, Katoku-Kikyo N, Wudel J, et al. Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol. 2006;26:1259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Manzoni EFM, Pennarossa G, Deeguileor M, Tettamanti G, Gandolfi F, Brevini TAL. 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep. 2016;6:37017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brevini TAL, Pennarossa G, Manzoni EFM, Gandolfi F. Safety and efficacy of epigenetically converted human fibroblasts into insulin-secreting cells: a preclinical study. Adv Exp Med Biol. 2018;1079 p. 151–62.

  56. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;25:645–6.

    Article  Google Scholar 

  57. Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, et al. Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Reports. 2014;3:539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brevini TAL, Cillo F, Colleoni S, Lazzari G, Galli C, Gandolfi F. Expression pattern of the maternal factor zygote arrest 1 (Zar1) in bovine tissues, oocytes, and embryos. Mol Reprod Dev. 2004;69:375–80.

    Article  CAS  PubMed  Google Scholar 

  59. Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, et al. Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep. 2013;14:629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berdasco M, Esteller M. DNA methylation in stem cell renewal and multipotency. Stem Cell Res Ther. 2011;2:42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Oda M, Kumaki Y, Shigeta M, Jakt LM, Matsuoka C, Yamagiwa A, et al. DNA methylation restricts lineage-specific functions of transcription factor gata4 during embryonic stem cell differentiation. Greally JM, editor. PLoS Genet. 2013;9:e1003574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, et al. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol. 2008;15:1176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oda M, Kito S, Tanaka T, Nishida I, Awano S, Fujita Y, et al. Prevalence and imaging characteristics of detectable tonsilloliths on 482 pairs of consecutive CT and panoramic radiographs. BMC Oral Health. 2013;13:54.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Li J-Y, Pu M-T, Hirasawa R, Li B-Z, Huang Y-N, Zeng R, et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol. 2007;27:8748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science (80- ). 2011;333:1300–3.

    Article  CAS  Google Scholar 

  67. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (80- ). 2009;324:930–5.

    Article  CAS  Google Scholar 

  68. Gu T-P, Guo F, Yang H, Wu H-P, Xu G-F, Liu W, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10.

    Article  CAS  PubMed  Google Scholar 

  69. Hu X, Zhang L, Mao SQ, Li Z, Chen J, Zhang RR, et al. Tet and TDG mediate DNA demethylation essential for mesenchymal-to-epithelial transition in somatic cell reprogramming. Cell Stem Cell. 2014;14:512–22.

    Article  CAS  PubMed  Google Scholar 

  70. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science (80- ). 2009;324:1673–7.

    Article  CAS  Google Scholar 

  71. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mammoto A, Ingber DE. Cytoskeletal control of growth and cell fate switching. Curr Opin Cell Biol. 2009;21:864–70.

    Article  CAS  PubMed  Google Scholar 

  73. Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol. 2009;10:34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science. 2017;356:eaal1810.

  75. Simian M, Bissell MJ. Organoids: a historical perspective of thinking in three dimensions. J Cell Biol. 2017;216:31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sozen B, Cox AL, De Jonghe J, Bao M, Hollfelder F, Glover DM, et al. Self-organization of mouse stem cells into an extended potential blastoid. Dev Cell. 2019;51:698–712.e8.

    Article  CAS  PubMed  Google Scholar 

  77. Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset J-C, Korving J, Vivié J, et al. Blastocyst-like structures generated solely from stem cells. Nature. 2018;557:106–11.

    Article  CAS  PubMed  Google Scholar 

  78. Clevers H. Modeling development and disease with organoids. Cell. 2016;165:1586–97.

    Article  CAS  PubMed  Google Scholar 

  79. Arbatan T, Al-Abboodi A, Sarvi F, Chan PP, Shen W. Tumor inside a pearl drop. Adv Heal Mater. 2012;1:467–9.

    Article  CAS  Google Scholar 

  80. Sarvi F, Jain K, Arbatan T, Verma PJ, Hourigan K, Thompson MC, et al. Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Heal Mater. 2015;4:77–86.

    Article  CAS  Google Scholar 

  81. Tian J, Fu N, Chen XD, Shen W. Respirable liquid marble for the cultivation of microorganisms. Colloids Surf B Biointerfaces. 2013;106:187–90.

  82. Serrano MC, Nardecchia S, Gutierrez MC, Ferrer ML, del Monte F. Mammalian cell cryopreservation by using liquid marbles. ACS Appl Mater Interfaces. 2015;7:3854–60.

    Article  CAS  PubMed  Google Scholar 

  83. Brevini TALL, Manzoni EFMM, Ledda S, Gandolfi F. Use of a super-hydrophobic microbioreactor to generate and boost pancreatic mini-organoids. Methods Mol Biol. 2017:291–9.

  84. Sarvi F, Arbatan T, Chan PPY, Shen WA. A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Adv. 2013;3:14501–8.

    Article  CAS  Google Scholar 

  85. Vadivelu RK, Ooi CH, Yao RQ, Tello Velasquez J, Pastrana E, Diaz-Nido J, et al. Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep. 2015;5:15083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Generously supported by the Carraresi Foundation. The authors are members of the COST Action CA16199 “In vitro 3-D total cell guidance and futness” (CellFit)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. L. Brevini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennarossa, G., Gandolfi, F. & Brevini, T.A.L. All roads lead to Rome: the many ways to pluripotency. J Assist Reprod Genet 37, 1029–1036 (2020). https://doi.org/10.1007/s10815-020-01744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01744-3

Keywords

Navigation