Skip to main content
Log in

Combination of the modulators of epigenetic machinery and specific cell signaling pathways as a promising approach for cell reprogramming

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

During embryogenesis and further development, mammalian epigenome undergoes global remodeling, which leads to the emergence of multiple fate-restricted cell lines as well as to their further differentiation into different specialized cell types. There are multiple lines of evidence suggesting that all these processes are mainly controlled by epigenetic mechanisms such as DNA methylation, histone covalent modifications, and the regulation of ATP-dependent remolding of chromatin structure. Based on the histone code hypothesis, distinct chromatin covalent modifications can lead to functionally distinct chromatin structures and thus distinctive gene expression that determine the fate of the cells. A large amount of recently accumulated data showed that small molecule biologically active compounds that involved in the regulation of chromatin structure and function in discriminative signaling environments can promote changes in cells fate. These data suggest that agents that involved in the regulation of chromatin modifying enzymes combined with factors that modulate specific cell signaling pathways could be effective tools for cell reprogramming. The goal of this review is to gather the most relevant and most recent literature that supports this proposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 10:622–640

    CAS  PubMed  Google Scholar 

  2. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 38:455–463

    Article  CAS  Google Scholar 

  3. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  CAS  Google Scholar 

  4. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  5. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  6. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  7. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D, Meyer J, Hubner K, Bernemann C, Ortmeier C, Zenke M, Fleischmann BK, Zaehres H, Scholer HR (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419. https://doi.org/10.1016/j.cell.2009.01.023

    Article  CAS  PubMed  Google Scholar 

  8. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275. https://doi.org/10.1038/nbt.1502

    Article  CAS  PubMed  Google Scholar 

  9. Wang LL, Serrano C, Zhong X, Ma S, Zou Y, Zhang CL (2021) Revisiting astrocyte to neuron conversion with lineage tracing in vivo. Cell 184(5465–5481):e16. https://doi.org/10.1016/j.cell.2021.09.005

    Article  CAS  Google Scholar 

  10. Tai W, Wu W, Wang LL, Ni H, Chen C, Yang J, Zang T, Zou Y, Xu XM, Zhang CL (2021) In vivo reprogramming of NG2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell 28(923–937):e4. https://doi.org/10.1016/j.stem.2021.02.009

    Article  CAS  Google Scholar 

  11. Liu ML, Zang T, Zhang CL (2016) Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Rep 14:115–128. https://doi.org/10.1016/j.celrep.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  12. Wang LL, Su Z, Tai W, Zou Y, Xu XM, Zhang CL (2016) The p53 pathway controls SOX2-mediated reprogramming in the adult mouse spinal cord. Cell Rep 17:891–903. https://doi.org/10.1016/j.celrep.2016.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, Zhang CL (2013) In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 15:1164–1175. https://doi.org/10.1038/ncb2843

    Article  CAS  PubMed  Google Scholar 

  14. Liu ML, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM, Zhang CL (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4:2183. https://doi.org/10.1038/ncomms3183

    Article  CAS  PubMed  Google Scholar 

  15. Xu Y, Zhang M, Li W, Zhu X, Bao X, Qin B, Hutchins AP, Esteban MA (2016) Transcriptional control of somatic cell reprogramming. Trends Cell Biol 26:272–288. https://doi.org/10.1016/j.tcb.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  16. Ghazizadeh Z, Rassouli H, Fonoudi H, Alikhani M, Talkhabi M, Darbandi-Azar A, Chen S, Baharvand H, Aghdami N, Salekdeh GH (2017) Transient activation of reprogramming transcription factors using protein transduction facilitates conversion of human fibroblasts toward cardiomyocyte-like cells. Mol Biotechnol 59:207–220. https://doi.org/10.1007/s12033-017-0007-x

    Article  CAS  PubMed  Google Scholar 

  17. Colasante G, Rubio A, Massimino L, Broccoli V (2019) Direct neuronal reprogramming reveals unknown functions for known transcription factors. Front Neurosci 13:283. https://doi.org/10.3389/fnins.2019.00283

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiao D, Liu X, Zhang M, Zou M, Deng Q, Sun D, Bian X, Cai Y, Guo Y, Liu S, Li S, Shiang E, Zhong H, Cheng L, Xu H, Jin K, Xiang M (2018) Direct reprogramming of fibroblasts into neural stem cells by single non-neural progenitor transcription factor Ptf1a. Nat Commun 9:2865. https://doi.org/10.1038/s41467-018-05209-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rombaut M, Boeckmans J, Rodrigues RM, van Grunsven LA, Vanhaecke T, De Kock J (2021) Direct reprogramming of somatic cells into induced hepatocytes: cracking the Enigma code. J Hepatol 75:690–705. https://doi.org/10.1016/j.jhep.2021.04.048

    Article  CAS  PubMed  Google Scholar 

  20. Razi Soofiyani S, Baradaran B, Lotfipour F, Kazemi T, Mohammadnejad L (2013) Gene therapy, early promises, subsequent problems, and recent breakthroughs. Adv Pharm Bull 3:249–255. https://doi.org/10.5681/apb.2013.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang H, Yang Y, Liu J, Qian L (2021) Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol 22:410–424. https://doi.org/10.1038/s41580-021-00335-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654. https://doi.org/10.1126/science.1239278

    Article  CAS  PubMed  Google Scholar 

  23. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797. https://doi.org/10.1038/nbt1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384. https://doi.org/10.1016/j.stem.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  25. Teng HF, Kuo YL, Loo MR, Li CL, Chu TW, Suo H, Liu HS, Lin KH, Chen SL (2010) Valproic acid enhances Oct4 promoter activity in myogenic cells. J Cell Biochem 110:995–1004. https://doi.org/10.1002/jcb.22613

    Article  CAS  PubMed  Google Scholar 

  26. Mao T, Han C, Deng R, Wei B, Meng P, Luo Y, Zhang Y (2018) Treating donor cells with 2-PCPA corrects aberrant histone H3K4 dimethylation and improves cloned goat embryo development. Syst Biol Reprod Med 64:174–182. https://doi.org/10.1080/19396368.2018.1446229

    Article  CAS  PubMed  Google Scholar 

  27. Sun H, Liang L, Li Y, Feng C, Li L, Zhang Y, He S, Pei D, Guo Y, Zheng H (2016) Lysine-specific histone demethylase 1 inhibition promotes reprogramming by facilitating the expression of exogenous transcriptional factors and metabolic switch. Sci Rep 6:30903. https://doi.org/10.1038/srep30903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Azghadi S, Clark AT (2011) Epigenetically reprogramming of human embryonic stem cells by 3-deazaneplanocin a and sodium butyrate. Int J Prev Med 2:73–78

    PubMed  PubMed Central  Google Scholar 

  29. Mali P, Chou BK, Yen J, Ye Z, Zou J, Dowey S, Brodsky RA, Ohm JE, Yu W, Baylin SB, Yusa K, Bradley A, Meyers DJ, Mukherjee C, Cole PA, Cheng L (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells 28:713–720. https://doi.org/10.1002/stem.402

    Article  CAS  PubMed  Google Scholar 

  30. Liang G, Taranova O, Xia K, Zhang Y (2010) Butyrate promotes induced pluripotent stem cell generation. J Biol Chem 285:25516–25521. https://doi.org/10.1074/jbc.M110.142059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kishigami S, Bui HT, Wakayama S, Tokunaga K, Van Thuan N, Hikichi T, Mizutani E, Ohta H, Suetsugu R, Sata T, Wakayama T (2007) Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. J Reprod Dev 53:165–170

    Article  Google Scholar 

  32. Zhao J, Hao Y, Ross JW, Spate LD, Walters EM, Samuel MS, Rieke A, Murphy CN, Prather RS (2010) Histone deacetylase inhibitors improve in vitro and in vivo developmental competence of somatic cell nuclear transfer porcine embryos. Cell Reprogram 12:75–83. https://doi.org/10.1089/cell.2009.0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, Zhu J, Du X, Xiong L, Du Y, Xu J, Xiao X, Wang J, Chai Z, Zhao Y, Deng H (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17:195–203. https://doi.org/10.1016/j.stem.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  34. Long Y, Wang M, Gu H, Xie X (2015) Bromodeoxyuridine promotes full-chemical induction of mouse pluripotent stem cells. Cell Res 25:1171–1174. https://doi.org/10.1038/cr.2015.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ye J, Ge J, Zhang X, Cheng L, Zhang Z, He S, Wang Y, Lin H, Yang W, Liu J, Zhao Y, Deng H (2016) Pluripotent stem cells induced from mouse neural stem cells and small intestinal epithelial cells by small molecule compounds. Cell Res 26:34–45. https://doi.org/10.1038/cr.2015.142

    Article  CAS  PubMed  Google Scholar 

  36. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, Wang M, Yang W, Pei G (2014) Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24:665–679. https://doi.org/10.1038/cr.2014.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang M, Lin YH, Sun YJ, Zhu S, Zheng J, Liu K, Cao N, Li K, Huang Y, Ding S (2016) Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 18:653–667. https://doi.org/10.1016/j.stem.2016.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W, Gao L, Shen L, Huang Y, Xie G, Zhao H, Jin Y, Tang B, Yu Y, Zhao J, Pei G (2015) Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17:204–212. https://doi.org/10.1016/j.stem.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  39. Zhang L, Yin JC, Yeh H, Ma NX, Lee G, Chen XA, Wang Y, Lin L, Chen L, Jin P, Wu GY, Chen G (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17:735–747. https://doi.org/10.1016/j.stem.2015.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, Qiu Z, Xie X (2015) Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res 25:1013–1024. https://doi.org/10.1038/cr.2015.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, Nie B, Xie M, Zhang M, Wang H, Ma T, Xu T, Shi G, Srivastava D, Ding S (2016) Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 352:1216–1220. https://doi.org/10.1126/science.aaf1502

    Article  CAS  PubMed  Google Scholar 

  42. Katsuda T, Kawamata M, Hagiwara K, Takahashi RU, Yamamoto Y, Camargo FD, Ochiya T (2017) Conversion of terminally committed hepatocytes to culturable bipotent progenitor cells with regenerative capacity. Cell Stem Cell 20:41–55. https://doi.org/10.1016/j.stem.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  43. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503. https://doi.org/10.1016/j.stem.2009.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma X, Kong L, Zhu S (2017) Reprogramming cell fates by small molecules. Protein Cell 8:328–348. https://doi.org/10.1007/s13238-016-0362-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xie X, Fu Y, Liu J (2017) Chemical reprogramming and transdifferentiation. Curr Opin Genet Dev 46:104–113. https://doi.org/10.1016/j.gde.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  46. Alexanian AR (2010) An efficient method for generation of neural-like cells from adult human bone marrow-derived mesenchymal stem cells. Regen Med 5:891–900

    Article  CAS  Google Scholar 

  47. Zhang Z, Maiman DJ, Kurpad SN, Crowe MJ, Alexanian AR (2011) Feline bone marrow-derived mesenchymal stem cells express several pluripotent and neural markers and easily turn into neural-like cells by manipulation with chromatin modifying agents and neural inducing factors. Cell Reprogram 13:385–390. https://doi.org/10.1089/cell.2011.0007

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Z, Alexanian AR (2012) Dopaminergic-like cells from epigenetically reprogrammed mesenchymal stem cells. J Cell Mol Med 16:2708–2714. https://doi.org/10.1111/j.1582-4934.2012.01591.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alexanian AR, Liu QS, Zhang Z (2013) Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels. Int J Biochem Cell Biol 45:1633–1638. https://doi.org/10.1016/j.biocel.2013.04.022

    Article  CAS  PubMed  Google Scholar 

  50. Funk RT, Alexanian AR (2013) Enhanced dopamine release by mesenchymal stem cells reprogrammed neuronally by the modulators of SMAD signaling, chromatin modifying enzymes, and cyclic adenosine monophosphate levels. Transl Res 162:317–323. https://doi.org/10.1016/j.trsl.2013.08.002

    Article  CAS  PubMed  Google Scholar 

  51. Wan XY, Xu LY, Li B, Sun QH, Ji QL, Huang DD, Zhao L, Xiao YT (2018) Chemical conversion of human lung fibroblasts into neuronal cells. Int J Mol Med 41:1463–1468. https://doi.org/10.3892/ijmm.2018.3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, Flint N, Jagasia R, Jensen Zoffmann S, Truong HH, Petitjean P, Jessberger S, Graf M, Iacone R (2014) Chemical conversion of human fibroblasts into functional Schwann cells. Stem cell reports 3:539–547. https://doi.org/10.1016/j.stemcr.2014.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini TA (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci USA 110:8948–8953. https://doi.org/10.1073/pnas.1220637110

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tian E, Sun G, Chao J, Ye P, Warden C, Riggs AD, Shi Y (2016) Small-molecule-based lineage reprogramming creates functional astrocytes. Cell Rep 16:781–792. https://doi.org/10.1016/j.celrep.2016.06.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bansal V, De D, An J, Kang TM, Jeong HJ, Kang JS, Kim KK (2019) Chemical induced conversion of mouse fibroblasts and human adipose-derived stem cells into skeletal muscle-like cells. Biomaterials 193:30–46. https://doi.org/10.1016/j.biomaterials.2018.11.037

    Article  CAS  PubMed  Google Scholar 

  56. Ye D, Li T, Heraud P, Parnpai R (2016) Effect of chromatin-remodeling agents in hepatic differentiation of rat bone marrow-derived mesenchymal stem cells in vitro and in vivo. Stem Cells Int 2016:3038764. https://doi.org/10.1155/2016/3038764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu J, Liu Y, Wang H, Hao H, Han Q, Shen J, Shi J, Li C, Mu Y, Han W (2013) Direct differentiation of hepatic stem-like WB cells into insulin-producing cells using small molecules. Sci Rep 3:1185. https://doi.org/10.1038/srep01185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Cell Reprogramming & Therapeutics LLC for providing the funding for this study.

Funding

Cell Reprogramming & Therapeutics LLC.

Author information

Authors and Affiliations

Authors

Contributions

ARA designed the original idea and developed it in detail, reviewed the literature, and wrote the manuscript.

Corresponding author

Correspondence to Arshak R. Alexanian.

Ethics declarations

Cell Reprogramming & Therapeutics LLC

Conflict of interest

The author declares that they have no competing interests for this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexanian, A.R. Combination of the modulators of epigenetic machinery and specific cell signaling pathways as a promising approach for cell reprogramming. Mol Cell Biochem 477, 2309–2317 (2022). https://doi.org/10.1007/s11010-022-04442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04442-z

Keywords

Navigation