Skip to main content
Log in

Preincubation with glutathione ethyl ester improves the developmental competence of vitrified mouse oocytes

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Oocyte vitrification is currently used for human fertility preservation. However, vitrification damage is a problem caused by decreasing ooplasmic levels of glutathione (GSH). The GSH donor glutathione ethyl ester (GSH-OEt) can significantly increase the GSH content in oocytes. However, it is difficult to obtain oocyte from woman. To overcome this, we used mouse oocytes to replace human oocytes as a model of study.

Methods

Oocytes from B6D2F1 mice were preincubated for 30 min with 2.5 mmol/L GSH-OEt (GSH-OEt group), without GSH-OEt preincubation before vitrification (control vitrification group) or in nonvitrified oocytes (fresh group). After thawing, oocytes were fertilized for evaluating the developmental competence of embryos in vitro and in vivo. Immunofluorescence, Polscope equipment and quantitative reverse transcription polymerase chain reaction (RT–qPCR) were used to analyze damage, including mitochondrial distribution, reactive oxygen species (ROS) levels, spindle morphology, and gene expression levels (Bcl-2, BAX, and MnSOD).

Results

The rates of fertilization, 3–4 cell, blastocyst formation and expanded blastocysts were significantly higher (p < 0.05) in the GSH-OEt group (90.4%; 91.1%; 88.9% and 63.0%) than in the control (80.0%; 81.4%; 77.7% and 50.5%). Provided embryos overcame the 2-cell block and developed to the blastocyst stage, birth rates of all groups were similar. Vitrification altered mitochondrial distribution, increased ROS levels, and caused abnormal spindle morphology; GSH-OEt preincubation could improve such damage. RT–qPCR showed that the expression of Bcl-2 was lower in the control group compared with the GSH-OEt group; BAX and MnSoD expression levels were higher in the control group than in the GSH-OEt group (p < 0.05).

Conclusions

The beneficial effect of GSH-OEt preincubation occurred before the 2-cell stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stoop D, Nekkebroeck J, Devroey P. A survey on the intentions and attitudes towards oocyte cryopreservation for non-medical reasons among women of reproductive age. Hum Reprod. 2011;26(3):655–61. https://doi.org/10.1093/humrep/deq367.

    Article  PubMed  CAS  Google Scholar 

  2. Noyes N, Labella PA, Grifo J, Knopman JM. Oocyte cryopreservation: a feasible fertility preservation option for reproductive age cancer survivors. J Assist Reprod Genet. 2010;27(8):495–9. https://doi.org/10.1007/s10815-010-9434-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seet VY, Al-Samerria S, Wong J, Stanger J, Yovich JL, Almahbobi G. Optimising vitrification of human oocytes using multiple cryoprotectants and morphological and functional assessment. Reprod Fertil Dev. 2013;25(6):918–26. https://doi.org/10.1071/rd12136.

    Article  PubMed  CAS  Google Scholar 

  4. Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod BioMed Online. 2005;11(3):300–8.

    Article  PubMed  Google Scholar 

  5. Siano L, Engmann L, Nulsen J, Benadiva C. A prospective pilot study comparing fertilization and embryo development between fresh and vitrified sibling oocytes. Conn Med. 2013;77(4):211–7.

    PubMed  Google Scholar 

  6. Potdar N, Gelbaya TA, Nardo LG. Oocyte vitrification in the 21st century and post-warming fertility outcomes: a systematic review and meta-analysis. Reprod BioMed Online. 2014;29(2):159–76. https://doi.org/10.1016/j.rbmo.2014.03.024.

    Article  PubMed  Google Scholar 

  7. Abedpour N, Rajaei F. Vitrification by Cryotop and the maturation, fertilization, and developmental rates of mouse oocytes. Iran Red Crescent Med J. 2015;17(10):e18172. https://doi.org/10.5812/ircmj.18172.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kohaya N, Fujiwara K, Ito J, Kashiwazaki N. Generation of live offspring from vitrified mouse oocytes of C57BL/6J strain. PLoS One. 2013;8(3):e58063. https://doi.org/10.1371/journal.pone.0058063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Manipalviratn S, Tong ZB, Stegmann B, Widra E, Carter J, DeCherney A. Effect of vitrification and thawing on human oocyte ATP concentration. Fertil Steril. 2011;95(5):1839–41. https://doi.org/10.1016/j.fertnstert.2010.10.040.

    Article  PubMed  CAS  Google Scholar 

  10. Somfai T, Ozawa M, Noguchi J, Kaneko H, Kuriani Karja NW, Farhudin M, et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology. 2007;55(2):115–26. https://doi.org/10.1016/j.cryobiol.2007.06.008.

    Article  PubMed  CAS  Google Scholar 

  11. Sun J, Chen Y, Li M, Ge Z. Role of antioxidant enzymes on ionizing radiation resistance. Free Radic Biol Med. 1998;24(4):586–93.

    Article  PubMed  CAS  Google Scholar 

  12. Simon HU, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415–8.

    Article  PubMed  CAS  Google Scholar 

  13. Favetta LA, St John EJ, King WA, Betts DH. High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radic Biol Med. 2007;42(8):1201–10. https://doi.org/10.1016/j.freeradbiomed.2007.01.018.

    Article  PubMed  CAS  Google Scholar 

  14. Taghavi SA, Valojerdi MR, Moghadam MF, Ebrahimi B. Vitrification of mouse preantral follicles versus slow freezing: morphological and apoptosis evaluation. Anim Sci J. 2015;86(1):37–44. https://doi.org/10.1111/asj.12244.

    Article  PubMed  CAS  Google Scholar 

  15. Chen SU, Lien YR, Chen HF, Chao KH, Ho HN, Yang YS. Open pulled straws for vitrification of mature mouse oocytes preserve patterns of meiotic spindles and chromosomes better than conventional straws. Hum Reprod. 2000;15(12):2598–603.

    Article  PubMed  CAS  Google Scholar 

  16. Choi WJ, Banerjee J, Falcone T, Bena J, Agarwal A, Sharma RK. Oxidative stress and tumor necrosis factor-alpha-induced alterations in metaphase II mouse oocyte spindle structure. Fertil Steril. 2007;88(4 Suppl):1220–31. https://doi.org/10.1016/j.fertnstert.2007.02.067.

    Article  PubMed  CAS  Google Scholar 

  17. Somfai T, Kikuchi K, Nagai T. Factors affecting cryopreservation of porcine oocytes. J Reprod Dev. 2012;58(1):17–24.

    Article  PubMed  Google Scholar 

  18. Day BJ. Catalase and glutathione peroxidase mimics. Biochem Pharmacol. 2009;77(3):285–96. https://doi.org/10.1016/j.bcp.2008.09.029.

    Article  PubMed  CAS  Google Scholar 

  19. Oliver JM, Albertini DF, Berlin RD. Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J Cell Biol. 1976;71(3):921–32.

    Article  PubMed  CAS  Google Scholar 

  20. Zuelke KA, Jones DP, Perreault SD. Glutathione oxidation is associated with altered microtubule function and disrupted fertilization in mature hamster oocytes. Biol Reprod. 1997;57(6):1413–9.

    Article  PubMed  CAS  Google Scholar 

  21. Lee CS, Koo DB, Fang N, Lee Y, Shin ST, Park CS, et al. Potent and stage-specific action of glutathione on the development of goat early embryos in vitro. Mol Reprod Dev. 2000;57(1):48–54. https://doi.org/10.1002/1098-2795(200009)57:1<48::aid-mrd7>3.0.co;2-r.

    Article  PubMed  CAS  Google Scholar 

  22. Zuelke KA, Jeffay SC, Zucker RM, Perreault SD. Glutathione (GSH) concentrations vary with the cell cycle in maturing hamster oocytes, zygotes, and pre-implantation stage embryos. Mol Reprod Dev. 2003;64(1):106–12. https://doi.org/10.1002/mrd.10214.

    Article  PubMed  Google Scholar 

  23. Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005;5(1):5–17.

    PubMed  Google Scholar 

  24. de Matos DG, Furnus CC, Moses DF. Glutathione synthesis during in vitro maturation of bovine oocytes: role of cumulus cells. Biol Reprod. 1997;57(6):1420–5.

    Article  PubMed  Google Scholar 

  25. Gupta MK, Uhm SJ, Lee HT. Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril. 2010;93(8):2602–7. https://doi.org/10.1016/j.fertnstert.2010.01.043.

    Article  PubMed  Google Scholar 

  26. Curnow EC, Ryan J, Saunders D, Hayes ES. Bovine in vitro oocyte maturation as a model for manipulation of the gamma-glutamyl cycle and intraoocyte glutathione. Reprod Fertil Dev. 2008;20(5):579–88.

    Article  PubMed  CAS  Google Scholar 

  27. Curnow EC, Ryan JP, Saunders DM, Hayes ES. In vitro developmental potential of macaque oocytes, derived from unstimulated ovaries, following maturation in the presence of glutathione ethyl ester. Hum Reprod. 2010;25(10):2465–74. https://doi.org/10.1093/humrep/deq225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000;73(6):1155–8.

    Article  PubMed  CAS  Google Scholar 

  29. Mature oocyte cryopreservation: a guideline. Fertility and sterility. 2013;99(1):37–43. doi:https://doi.org/10.1016/j.fertnstert.2012.09.028.

  30. Larman MG, Sheehan CB, Gardner DK. Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction. 2006;131(1):53–61. https://doi.org/10.1530/rep.1.00878.

    Article  PubMed  CAS  Google Scholar 

  31. Bogliolo L, Ledda S, Innocenzi P, Ariu F, Bebbere D, Rosati I, et al. Raman microspectroscopy as a non-invasive tool to assess the vitrification-induced changes of ovine oocyte zona pellucida. Cryobiology. 2012;64(3):267–72. https://doi.org/10.1016/j.cryobiol.2012.02.010.

    Article  PubMed  CAS  Google Scholar 

  32. Takeo T, Nakagata N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol Reprod. 2011;85(5):1066–72. https://doi.org/10.1095/biolreprod.111.092536.

    Article  PubMed  CAS  Google Scholar 

  33. Ishizuka Y, Nishimura M, Matsumoto K, Miyashita M, Takeo T, Nakagata N, et al. The influence of reduced glutathione in fertilization medium on the fertility of in vitro-matured C57BL/6 mouse oocytes. Theriogenology. 2013;80(5):421–6. https://doi.org/10.1016/j.theriogenology.2013.07.002.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao XM, Du WH, Wang D, Hao HS, Liu Y, Qin T, et al. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev. 2011;78(12):942–50. https://doi.org/10.1002/mrd.21389.

    Article  PubMed  CAS  Google Scholar 

  35. Ou XH, Li S, Wang ZB, Li M, Quan S, Xing F, et al. Maternal insulin resistance causes oxidative stress and mitochondrial dysfunction in mouse oocytes. Hum Reprod. 2012;27(7):2130–45. https://doi.org/10.1093/humrep/des137.

    Article  PubMed  CAS  Google Scholar 

  36. Wu C, Rui R, Dai J, Zhang C, Ju S, Xie B, et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol Reprod Dev. 2006;73(11):1454–62. https://doi.org/10.1002/mrd.20579.

    Article  PubMed  CAS  Google Scholar 

  37. Rojas C, Palomo MJ, Albarracin JL, Mogas T. Vitrification of immature and in vitro matured pig oocytes: study of distribution of chromosomes, microtubules, and actin microfilaments. Cryobiology. 2004;49(3):211–20. https://doi.org/10.1016/j.cryobiol.2004.07.002.

    Article  PubMed  CAS  Google Scholar 

  38. Mellon MG, Rebhun LI. Sulfhydryls and the in vitro polymerization of tubulin. J Cell Biol. 1976;70(1):226–38.

    Article  PubMed  CAS  Google Scholar 

  39. Tarin JJ, Vendrell FJ, Ten J, Blanes R, van Blerkom J, Cano A. The oxidizing agent tertiary butyl hydroperoxide induces disturbances in spindle organization, c-meiosis, and aneuploidy in mouse oocytes. Mol Hum Reprod. 1996;2(12):895–901.

    Article  PubMed  CAS  Google Scholar 

  40. Tamura AN, Huang TT, Marikawa Y. Impact of vitrification on the meiotic spindle and components of the microtubule-organizing center in mouse mature oocytes. Biol Reprod. 2013;89(5):112. https://doi.org/10.1095/biolreprod.113.108167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zander-Fox D, Cashman KS, Lane M. The presence of 1 mM glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development. J Assist Reprod Genet. 2013;30(1):107–16. https://doi.org/10.1007/s10815-012-9898-4.

    Article  PubMed  Google Scholar 

  42. Moawad AR, Xu B, Tan SL, Taketo T. l-Carnitine supplementation during vitrification of mouse germinal vesicle stage-oocytes and their subsequent in vitro maturation improves meiotic spindle configuration and mitochondrial distribution in metaphase II oocytes. Hum Reprod. 2014;29(10):2256–68. https://doi.org/10.1093/humrep/deu201.

    Article  PubMed  CAS  Google Scholar 

  43. Nagai S, Mabuchi T, Hirata S, Shoda T, Kasai T, Yokota S, et al. Correlation of abnormal mitochondrial distribution in mouse oocytes with reduced developmental competence. Tohoku J Exp Med. 2006;210(2):137–44.

    Article  PubMed  CAS  Google Scholar 

  44. Brevini TA, Vassena R, Francisci C, Gandolfi F. Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biol Reprod. 2005;72(5):1218–23. https://doi.org/10.1095/biolreprod.104.038141.

    Article  PubMed  CAS  Google Scholar 

  45. Rho GJ, Kim S, Yoo JG, Balasubramanian S, Lee HJ, Choe SY. Microtubulin configuration and mitochondrial distribution after ultra-rapid cooling of bovine oocytes. Mol Reprod Dev. 2002;63(4):464–70. https://doi.org/10.1002/mrd.10196.

    Article  PubMed  CAS  Google Scholar 

  46. Chen C, Han S, Liu W, Wang Y, Huang G. Effect of vitrification on mitochondrial membrane potential in human metaphase II oocytes. J Assist Reprod Genet. 2012;29(10):1045–50. https://doi.org/10.1007/s10815-012-9848-1.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jo JW, Lee JR, Jee BC, Suh CS, Kim SH. Exposing mouse oocytes to necrostatin 1 during in vitro maturation improves maturation, survival after vitrification, mitochondrial preservation, and developmental competence. Reprod Sci. 2015;22(5):615–25. https://doi.org/10.1177/1933719114556482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21(1):92–101. https://doi.org/10.1016/j.devcel.2011.06.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Goddard MJ, Pratt HP. Control of events during early cleavage of the mouse embryo: an analysis of the ‘2-cell block’. J Embryol Exp Morpholog. 1983;73:111–33.

    CAS  Google Scholar 

  50. Qiu JJ, Zhang WW, Wu ZL, Wang YH, Qian M, Li YP. Delay of ZGA initiation occurred in 2-cell blocked mouse embryos. Cell Res. 2003;13(3):179–85. https://doi.org/10.1038/sj.cr.7290162.

    Article  PubMed  CAS  Google Scholar 

  51. Nakano H, Kubo H. Rescue of mouse embryos from 2-cell blocks by microinjection of maturation promoting factor. Fertil Steril. 2001;75(6):1194–7.

    Article  PubMed  CAS  Google Scholar 

  52. Chamayou S, Bonaventura G, Alecci C, Tibullo D, Di Raimondo F, Guglielmino A, et al. Consequences of metaphase II oocyte cryopreservation on mRNA content. Cryobiology. 2011;62(2):130–4. https://doi.org/10.1016/j.cryobiol.2011.01.014.

    Article  PubMed  CAS  Google Scholar 

  53. Ariu F, Bogliolo L, Leoni G, Falchi L, Bebbere D, Nieddu SM, et al. Effect of caffeine treatment before vitrification on MPF and MAPK activity and spontaneous parthenogenetic activation of in vitro matured ovine oocytes. Cryo Letters. 2014;35(6):530–6.

    PubMed  CAS  Google Scholar 

  54. Grifo JA, Noyes N. Delivery rate using cryopreserved oocytes is comparable to conventional in vitro fertilization using fresh oocytes: potential fertility preservation for female cancer patients. Fertil Steril. 2010;93(2):391–6. https://doi.org/10.1016/j.fertnstert.2009.02.067.

    Article  PubMed  CAS  Google Scholar 

  55. Cobo A, Meseguer M, Remohi J, Pellicer A. Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod. 2010;25(9):2239–46. https://doi.org/10.1093/humrep/deq146.

    Article  PubMed  Google Scholar 

  56. Gartner A, Milstein S, Ahmed S, Hodgkin J, Hengartner MO. A conserved checkpoint pathway mediates DNA damage—induced apoptosis and cell cycle arrest in C. elegans. Mol Cell. 2000;5(3):435–43.

    Article  PubMed  CAS  Google Scholar 

  57. Nunez-Calonge R, Cortes S, Gutierrez Gonzalez LM, Kireev R, Vara E, Ortega L, et al. Oxidative stress in follicular fluid of young women with low response compared with fertile oocyte donors. Reprod BioMed Online. 2016;32(4):446–56. https://doi.org/10.1016/j.rbmo.2015.12.010.

    Article  PubMed  CAS  Google Scholar 

  58. Donabela FC, Meola J, Padovan CC, de Paz CC, Navarro PA. Higher SOD1 gene expression in cumulus cells from infertile women with moderate and severe endometriosis. Reprod Sci. 2015;22(11):1452–60. https://doi.org/10.1177/1933719115585146.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Natural Science Foundation of China (No. 81601342) from Dr Yijuan Sun

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Feng or Yijuan Sun.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Gu, R., Lu, X. et al. Preincubation with glutathione ethyl ester improves the developmental competence of vitrified mouse oocytes. J Assist Reprod Genet 35, 1169–1178 (2018). https://doi.org/10.1007/s10815-018-1215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1215-4

Keywords

Navigation