Skip to main content
Log in

The presence of 1 mM glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Embryos generated from oocytes which have been vitrified have lower blastocyst development rates than embryos generated from fresh oocytes. This is indicative of a level of irreversible damage to the oocyte possibly due to exposure to high cryoprotectant levels and osmotic stress. This study aimed to assess the effects of vitrification on the mitochondria of mature mouse oocytes while also examining the ability of the osmolyte glycine, to maintain cell function after vitrification.

Methods

Oocytes were cryopreserved via vitrification with or without 1 mM Glycine and compared to fresh oocyte controls. Oocytes were assessed for mitochondrial distribution and membrane potential as well as their ability to fertilise. Blastocyst development and gene expression was also examined.

Results

Vitrification altered mitochondrial distribution and membrane potential, which did not recover after 2 h of culture. Addition of 1 mM glycine to the vitrification media prevented these perturbations. Furthermore, blastocyst development from oocytes that were vitrified with glycine was significantly higher compared to those vitrified without glycine (83.9 % vs. 76.5 % respectively; p < 0.05) and blastocysts derived from oocytes that were vitrified without glycine had significantly decreased levels of IGF2 and Glut3 compared to control blastocysts however those derived from oocytes vitrified with glycine had comparable levels of these genes compared to fresh controls.

Conclusion

Addition of 1 mM glycine to the vitrification solutions improved the ability of the oocyte to maintain its mitochondrial physiology and subsequent development and therefore could be considered for routine inclusion in cryopreservation solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acton BM, Jurisicova A, Jurisica I, Casper RF. Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol Hum Reprod. 2004;10:23–32.

    Article  PubMed  CAS  Google Scholar 

  2. Agca Y, Liu J, Rutledge JJ, Critser ES, Critser JK. Effect of osmotic stress on the developmental competence of germinal vesicle and metaphase II stage bovine cumulus oocyte complexes and its relevance to cryopreservation. Mol Reprod Dev. 2000;55:212–9.

    Article  PubMed  CAS  Google Scholar 

  3. Anchamparuthy VM, Pearson RE, Gwazdauskas FC. Expression pattern of apoptotic genes in vitrified-thawed bovine oocytes. Reprod Domest Anim. 2010;45:e83–90.

    PubMed  CAS  Google Scholar 

  4. Baltz JM. Media composition: salts and osmolality. Methods Mol Biol. 2012;912:61–80.

    PubMed  CAS  Google Scholar 

  5. Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update. 2010;16:166–76.

    Article  PubMed  CAS  Google Scholar 

  6. Barnett DK, Bavister BD. What is the relationship between the metabolism of preimplantation embryos and their developmental competence? Mol Reprod Dev. 1996;43:105–33.

    Article  PubMed  CAS  Google Scholar 

  7. Barnett DK, Kimura J, Bavister BD. Translocation of active mitochondria during hamster preimplantation embryo development studied by confocal laser scanning microscopy. Dev Dyn. 1996;205:64–72.

    Article  PubMed  CAS  Google Scholar 

  8. Barnett DK, Clayton MK, Kimura J, Bavister BD. Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol Reprod Dev. 1997;48:227–37.

    Article  PubMed  CAS  Google Scholar 

  9. Brevini TA, Vassena R, Francisci C, Gandolfi F. Role of adenosine triphosphate, active mitochondria, and microtubules in the acquisition of developmental competence of parthenogenetically activated pig oocytes. Biol Reprod. 2005;72:1218–23.

    Article  PubMed  CAS  Google Scholar 

  10. Brown KW, Villar AJ, Bickmore W, Clayton-Smith J, Catchpoole D, Maher ER, et al. Imprinting mutation in the Beckwith-Wiedemann syndrome leads to biallelic IGF2 expression through an H19-independent pathway. Hum Mol Genet. 1996;5:2027–32.

    Article  PubMed  CAS  Google Scholar 

  11. Chen SU, Lien YR, Chao K, Lu HF, Ho HN, Yang YS. Cryopreservation of mature human oocytes by vitrification with ethylene glycol in straws. Fertil Steril. 2000;74:804–8.

    Article  PubMed  CAS  Google Scholar 

  12. Chen C, Han S, Liu W, Wang Y, Huang G. Effect of vitrification on mitochondrial membrane potential in human metaphase II oocytes. J Assist Reprod Genet 2012.

  13. Chi MM, Hoehn A, Moley KH. Metabolic changes in the glucose-induced apoptotic blastocyst suggest alterations in mitochondrial physiology. Am J Physiol Endocrinol Metab. 2002;283:E226–32.

    PubMed  CAS  Google Scholar 

  14. Cobo A. Oocyte vitrification: a watershed in ART. Fertil Steril. 2012;98:600–1.

    Article  PubMed  Google Scholar 

  15. Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2011;96:277–85.

    Article  PubMed  Google Scholar 

  16. Cobo A, Kuwayama M, Perez S, Ruiz A, Pellicer A, Remohi J. Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertil Steril. 2008;89:1657–64.

    Article  PubMed  Google Scholar 

  17. Cummins JM. The role of mitochondria in the establishment of oocyte functional competence. Eur J Obstet Gynecol Reprod Biol. 2004;115 Suppl 1:S23–9.

    Article  PubMed  CAS  Google Scholar 

  18. Dawson KM, Baltz JM. Organic osmolytes and embryos: substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod. 1997;56:1550–8.

    Article  PubMed  CAS  Google Scholar 

  19. Dawson KM, Collins JL, Baltz JM. Osmolarity-dependent glycine accumulation indicates a role for glycine as an organic osmolyte in early preimplantation mouse embryos. Biol Reprod. 1998;59:225–32.

    Article  PubMed  CAS  Google Scholar 

  20. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 1990;345:78–80.

    Article  PubMed  CAS  Google Scholar 

  21. Eroglu A, Toth TL, Toner M. Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertil Steril. 1998;69:944–57.

    Article  PubMed  CAS  Google Scholar 

  22. Forman EJ, Li X, Ferry KM, Scott K, Treff NR, Scott Jr RT. Oocyte vitrification does not increase the risk of embryonic aneuploidy or diminish the implantation potential of blastocysts created after intracytoplasmic sperm injection: a novel, paired randomized controlled trial using DNA fingerprinting. Fertil Steril. 2012;98:644–9.

    Article  PubMed  CAS  Google Scholar 

  23. Gardner DK, Lane MW, Lane M. EDTA stimulates cleavage stage bovine embryo development in culture but inhibits blastocyst development and differentiation. Mol Reprod Dev. 2000;57:256–61.

    Article  PubMed  CAS  Google Scholar 

  24. Gardner DK, Lane M, Watson AJ, editors. A laboratory guide to the mammalian embryo. New York: Oxford University Press; 2004.

    Google Scholar 

  25. Gualtieri R, Mollo V, Barbato V, Fiorentino I, Iaccarino M, Talevi R. Ultrastructure and intracellular calcium response during activation in vitrified and slow-frozen human oocytes. Hum Reprod. 2011;26:2452–60.

    Article  PubMed  CAS  Google Scholar 

  26. Heggeness MH, Simon M, Singer SJ. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A. 1978;75:3863–6.

    Article  PubMed  CAS  Google Scholar 

  27. Isachenko V, Alabart JL, Nawroth F, Isachenko E, Vajta G, Folch J. The open pulled straw vitrification of ovine GV-oocytes: positive effect of rapid cooling or rapid thawing or both? Cryo Letters. 2001;22:157–62.

    PubMed  CAS  Google Scholar 

  28. Jones A, Van Blerkom J, Davis P, Toledo AA. Cryopreservation of metaphase II human oocytes effects mitochondrial membrane potential: implications for developmental competence. Hum Reprod. 2004;19:1861–6.

    Article  PubMed  Google Scholar 

  29. Kuleshova LL, Lopata A. Vitrification can be more favorable than slow cooling. Fertil Steril. 2002;78:449–54.

    Article  PubMed  Google Scholar 

  30. Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A. Birth following vitrification of a small number of human oocytes: case report. Hum Reprod. 1999;14:3077–9.

    Article  PubMed  CAS  Google Scholar 

  31. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil. 1997;109:153–64.

    Article  PubMed  CAS  Google Scholar 

  32. Lane M, Gardner DK. Vitrification of mouse oocytes using a nylon loop. Mol Reprod Dev. 2001;58:342–7.

    Article  PubMed  CAS  Google Scholar 

  33. Lane MW, Ahern TJ, Lewis IM, Gardner DK, Peura TT. Cryopreservation and direct transfer of in vitro produced bovine embryos: a comparison between vitrification and slow-freezing. Theriogenology. 1998;49:170.

    Article  Google Scholar 

  34. Lane M, Bavister BD, Lyons EA, Forest KT. Containerless vitrification of mammalian oocytes and embryos. Nat Biotechnol. 1999;17:1234–6.

    Article  PubMed  CAS  Google Scholar 

  35. Leese HJ, Conaghan J, Martin KL, Hardy K. Early human embryo metabolism. Bioessays. 1993;15:259–64.

    Article  PubMed  CAS  Google Scholar 

  36. Li JJ, Pei Y, Zhou GB, Suo L, Wang YP, Wu GQ, et al. Histone deacetyltransferase1 expression in mouse oocyte and their in vitro-fertilized embryo: effect of oocyte vitrification. Cryo Letters. 2011;32:13–20.

    PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  38. Lucena E, Bernal DP, Lucena C, Rojas A, Moran A, Lucena A. Successful ongoing pregnancies after vitrification of oocytes. Fertil Steril. 2006;85:108–11.

    Article  PubMed  Google Scholar 

  39. Manipalviratn S, Tong ZB, Stegmann B, Widra E, Carter J, DeCherney A. Effect of vitrification and thawing on human oocyte ATP concentration. Fertil Steril. 2011;95:1839–41.

    Article  PubMed  CAS  Google Scholar 

  40. Mavrides A, Morroll D. Cryopreservation of bovine oocytes: is cryoloop vitrification the future to preserving the female gamete? Reprod Nutr Dev. 2002;42:73–80.

    Article  PubMed  Google Scholar 

  41. Mitchell M, Schulz SL, Armstrong DT, Lane M. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention. Biol Reprod. 2009;80:622–30.

    Article  PubMed  CAS  Google Scholar 

  42. Monzo C, Haouzi D, Roman K, Assou S, Dechaud H, Hamamah S. Slow freezing and vitrification differentially modify the gene expression profile of human metaphase II oocytes. Hum Reprod. 2012;27:2160–8.

    Article  PubMed  CAS  Google Scholar 

  43. Mullen SF, Agca Y, Broermann DC, Jenkins CL, Johnson CA, Critser JK. The effect of osmotic stress on the metaphase II spindle of human oocytes, and the relevance to cryopreservation. Hum Reprod. 2004;19:1148–54.

    Article  PubMed  CAS  Google Scholar 

  44. Needleman DJ, Ojeda-Lopez MA, Raviv U, Ewert K, Jones JB, Miller HP, et al. Synchrotron X-ray diffraction study of microtubules buckling and bundling under osmotic stress: a probe of interprotofilament interactions. Phys Rev Lett. 2004;93:198104.

    Article  PubMed  Google Scholar 

  45. NIH Guide. Guide for the care and use of laboratory animals. Bethesda: Institute for Laboratory Animal Research (ILAR) of the National Academy of Science; 1996.

    Google Scholar 

  46. Pantaleon M, Harvey MB, Pascoe WS, James DE, Kaye PL. Glucose transporter GLUT3: ontogeny, targeting, and role in the mouse blastocyst. Proc Natl Acad Sci U S A. 1997;94:3795–800.

    Article  PubMed  CAS  Google Scholar 

  47. Pickering SJ, Johnson MH. The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod. 1987;2:207–16.

    PubMed  CAS  Google Scholar 

  48. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990;54:102–8.

    PubMed  CAS  Google Scholar 

  49. Porcu E. Textbook of assisted reproductive techniques laboratory and clinical perspectives. In: Gardner D, Weissman A, Howles C, Shoham Z, editors. Oocyte cryopreservation. United Kingdom: Martin Dunitz Ltd; 2001. p. 233–42.

    Google Scholar 

  50. Quintans CJ, Donaldson MJ, Bertolino MV, Pasqualini RS. Birth of two babies using oocytes that were cryopreserved in a choline-based freezing medium. Hum Reprod. 2002;17:3149–52.

    Article  PubMed  CAS  Google Scholar 

  51. Rall WF, Fahy GM. Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification. Nature. 1985;313:573–5.

    Article  PubMed  CAS  Google Scholar 

  52. Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991;30:4480–6.

    Article  PubMed  CAS  Google Scholar 

  53. Reubinoff BE, Pera MF, Vajta G, Trounson AO. Effective cryopreservation of human embryonic stem cells by the open pulled straw vitrification method. Hum Reprod. 2001;16:2187–94.

    Article  PubMed  CAS  Google Scholar 

  54. Rho GJ, Kim S, Yoo JG, Balasubramanian S, Lee HJ, Choe SY. Microtubulin configuration and mitochondrial distribution after ultra-rapid cooling of bovine oocytes. Mol Reprod Dev. 2002;63:464–70.

    Article  PubMed  CAS  Google Scholar 

  55. Richards T, Wang F, Liu L, Baltz JM. Rescue of postcompaction-stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol Reprod. 2010;82:769–77.

    Article  PubMed  CAS  Google Scholar 

  56. Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, et al. Embryo development of fresh ’versus‘ vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod. 2010;25:66–73.

    Article  PubMed  Google Scholar 

  57. Rubi B, del Arco A, Bartley C, Satrustegui J, Maechler P. The malate-aspartate NADH shuttle member Aralar1 determines glucose metabolic fate, mitochondrial activity, and insulin secretion in beta cells. J Biol Chem. 2004;279:55659–66.

    Article  PubMed  CAS  Google Scholar 

  58. Saheki T, Kobayashi K, et al. Pathogenesis and pathophysiology of citrin (a mitochondrial aspartate glutamate carrier) deficiency. Metab Brain Dis. 2002;17:335–46.

    Article  PubMed  CAS  Google Scholar 

  59. Selman H, Angelini A, Barnocchi N, Brusco GF, Pacchiarotti A, Aragona C. Ongoing pregnancies after vitrification of human oocytes using a combined solution of ethylene glycol and dimethyl sulfoxide. Fertil Steril 2006.

  60. Stachecki JJ, Cohen J, Willadsen S. Detrimental effects of sodium during mouse oocyte cryopreservation. Biol Reprod. 1998;59:395–400.

    Article  PubMed  CAS  Google Scholar 

  61. Stachecki JJ, Cohen J, Willadsen SM. Cryopreservation of unfertilized mouse oocytes: the effect of replacing sodium with choline in the freezing medium. Cryobiology. 1998;37:346–54.

    Article  PubMed  CAS  Google Scholar 

  62. Stachecki JJ, Cohen J, Schimmel T, Willadsen SM. Fetal development of mouse oocytes and zygotes cryopreserved in a nonconventional freezing medium. Cryobiology. 2002;44:5–13.

    Article  PubMed  CAS  Google Scholar 

  63. Steeves CL, Hammer MA, Walker GB, Rae D, Stewart NA, Baltz JM. The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos. Proc Natl Acad Sci U S A. 2003;100:13982–7.

    Article  PubMed  CAS  Google Scholar 

  64. Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online. 2006;12:779–96.

    Article  PubMed  Google Scholar 

  65. Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;128:269–80.

    Article  PubMed  Google Scholar 

  66. Van Blerkom J, Davis P. High-polarized (Delta Psi m(HIGH)) mitochondria are spatially polarized in human oocytes and early embryos in stable subplasmalemmal domains: developmental significance and the concept of vanguard mitochondria. Reprod Biomed Online. 2006;13:246–54.

    Article  PubMed  Google Scholar 

  67. Van Blerkom J, Davis P, Mathwig V, Alexander S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod. 2002;17:393–406.

    Article  PubMed  Google Scholar 

  68. Van Blerkom J, Davis P, Alexander S. Inner mitochondrial membrane potential (DeltaPsim), cytoplasmic ATP content and free Ca2+ levels in metaphase II mouse oocytes. Hum Reprod. 2003;18:2429–40.

    Article  PubMed  Google Scholar 

  69. Van Winkle LJ, Haghighat N, Campione AL. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool. 1990;253:215–9.

    Article  PubMed  Google Scholar 

  70. Vanhoutte L, Cortvrindt R, Nogueira D, Smitz J. Effects of chilling on structural aspects of early preantral mouse follicles. Biol Reprod. 2004;70:1041–8.

    Article  PubMed  CAS  Google Scholar 

  71. Yan J, Suzuki J, Yu X, Kan FW, Qiao J, Chian RC. Cryo-survival, fertilization and early embryonic development of vitrified oocytes derived from mice of different reproductive age. J Assist Reprod Genet. 2010;27:605–11.

    Article  PubMed  Google Scholar 

  72. Yoon TK, Kim TJ, Park SE, Hong SW, Ko JJ, Chung HM, et al. Live births after vitrification of oocytes in a stimulated in vitro fertilization-embryo transfer program. Fertil Steril. 2003;79:1323–6.

    Article  PubMed  Google Scholar 

  73. Zander DL, Thompson JG, Lane M. Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol Reprod. 2006;74:288–94.

    Article  PubMed  CAS  Google Scholar 

  74. Zhao XM, Du WH, Wang D, Hao HS, Liu Y, Qin T, et al. Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol Reprod Dev. 2011;78:942–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Karen Kind for her assistance with the gene expression experiments, Dr. Jeremy Thompson assistance with experimental design and David Froiland for his assistance with confocal microscopy. The authors acknowledge the support of the NHMRC and Channel 7 Children’s Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre Zander-Fox.

Additional information

Capsule

The beneficial effects of glycine in oocyte vitrification solutions on mitochondrial homeostasis and blastocyst development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zander-Fox, D., Cashman, K.S. & Lane, M. The presence of 1 mM glycine in vitrification solutions protects oocyte mitochondrial homeostasis and improves blastocyst development. J Assist Reprod Genet 30, 107–116 (2013). https://doi.org/10.1007/s10815-012-9898-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9898-4

Keywords

Navigation