Skip to main content
Log in

Optimization of microelectrophoresis to select highly negatively charged sperm

  • Technological Innovations
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The sperm membrane undergoes extensive surface remodeling as it matures in the epididymis. During this process, the sperm is encapsulated in an extensive glycocalyx layer, which provides the membrane with its characteristic negative electrostatic charge. In this study, we develop a method of microelectrophoresis and standardize the protocol to isolate sperm with high negative membrane charge.

Methods

Under an electric field, the percentage of positively charged sperm (PCS), negatively charged sperm (NCS), and neutrally charged sperm was determined for each ejaculate prior to and following density gradient centrifugation (DGC), and evaluated for sperm DNA damage, and histone retention. Subsequently, PCS, NCS, and neutrally charged sperm were selected using an ICSI needle and directly analyzed for DNA damage.

Results

When raw semen was analyzed using microelectrophoresis, 94 % were NCS. In contrast, DGC completely or partially stripped the negative membrane charge from sperm resulting PCS and neutrally charged sperm, while the charged sperm populations are increased with an increase in electrophoretic current. Following DGC, high sperm DNA damage and abnormal histone retention were inversely correlated with percentage NCS and directly correlated with percentage PCS. NCS exhibited significantly lower DNA damage when compared with control (P < 0.05) and PCS (P < 0.05). When the charged sperm population was corrected for neutrally charged sperm, sperm DNA damage was strongly associated with NCS at a lower electrophoretic current.

Conclusion

The results suggest that selection of NCS at lower current may be an important biomarker to select healthy sperm for assisted reproductive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Veres I. Negative electrical charge of the surface of bull sperm. Mikroskopie. 1968;23:166–9.

    CAS  PubMed  Google Scholar 

  2. Nevo AC, Michaeli I, Schindler H. Electrophoretic properties of bull and of rabbit spermatozoa. Exp Cell Res. 1961;23:69–83.

    Article  CAS  PubMed  Google Scholar 

  3. Yanagimachi R, Noda YD, Fujimoto M, Nicolson GL. The distribution of negative surface charges on mammalian spermatozoa. Am J Anat. 1972;135:497–520.

    Article  CAS  PubMed  Google Scholar 

  4. Bedford JM. Changes in the electrophoretic properties of rabbit spermatozoa during passage through the epididymis. Nature. 1963;200:1178–80.

    Article  CAS  PubMed  Google Scholar 

  5. Bostwick EF, Bentley MD, Hunter AG, Hammer R. Identification of surface glycoprotein on porcine spermatozoa and its alteration during epididymal maturation. Biol Reprod. 1980;23:161–5.

    Article  CAS  PubMed  Google Scholar 

  6. Olson GE, Danzo BJ. Surface changes in the rat spermatozoa during epididymal transit. Biol Reprod. 1981;24:431–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lassalle B, Testart J. Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. J Reprod Fertil. 1994;101:703–11.

    Article  CAS  PubMed  Google Scholar 

  8. Deng X, Czymmek K, Deleon M. Biochemical maturation of spam1 (PH-20) during epididymal transit of mouse sperm involves modifications of N-linked oligosaccharides. Mol Reprod Dev. 1999;52:196–206.

    Article  CAS  PubMed  Google Scholar 

  9. Ainsworth CJ, Nixon B, Aitken RJ. The electrophoretic separation of spermatozoa: an analysis of genotype, surface carbohydrate composition and potential for capacitation. Int J Androl. 2011;34:422–34.

    Article  Google Scholar 

  10. Bedford JM. Sperm capacitation and fertilization in mammals. Biol Reprod. 1970;2:128–58.

    Article  CAS  PubMed  Google Scholar 

  11. Bedford JM, Nicander L. Ultrastructural changes in the acrosome and sperm membranes during maturation of spermatozoa in the testis and epididymis of the rabbit and monkey. J Anat. 1971;108:527–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirchhoff C, Schroter S. New insights into the origin, structure and role of CD52: a major component of the mammalian sperm glycocalyx. Cells Tissues Organs. 2001;168:93–104.

    Article  CAS  PubMed  Google Scholar 

  13. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–35.

    Article  CAS  PubMed  Google Scholar 

  14. Golan R, Shochat L, Weissenberg R, Soffer Y, Marcus Z, Oschry Y, et al. Evaluation of chromatin condensation in human spermatozoa: a flow cytometric assay using Acridine Orange staining. Mol Hum Reprod. 1977;3:47–54.

    Article  Google Scholar 

  15. Turner TT. On the epididymis and its role in the development of the fertile ejaculate. J Androl. 1995;16:292–8.

    CAS  PubMed  Google Scholar 

  16. Cooper TG. Interactions between epididymal secretions and spermatozoa. J Reprod Fertil. 1998;53:119–36.

    CAS  Google Scholar 

  17. Schroter S, Osterhoff C, McArdle W, Ivell R. The glycocalyx of the sperm surface. Hum Reprod Update. 1999;5:302–13.

    Article  CAS  PubMed  Google Scholar 

  18. Giuliani V, Pandolfi C, Santucci R, Pelliccione F, Macerola B, Focarelli R, et al. Expression of gp20, a human sperm antigen of epididymal origin, is reduced in spermatozoa from subfertile men. Mol Reprod Dev. 2004;69:235–40.

    Article  CAS  PubMed  Google Scholar 

  19. Schroter S, Derr P, Conradt HS, Nimtz M, Hale G, Kirchhoff C. Male-specific modification of human CD52. J Biol Chem. 1999;274:29862–73.

    Article  CAS  PubMed  Google Scholar 

  20. Ishijima SA, Okuno M, Mohri H. Zeta potential of human X- and Y-bearing sperm. Int J Androl. 1991;14:340–7.

    Article  CAS  PubMed  Google Scholar 

  21. Yudin AI, Generao SE, Tollner TL, Treece CA, Overstreet JW, Cherr GN. Beta-defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Bio Reprod. 2005;73:1243–52.

    Article  CAS  Google Scholar 

  22. Chan PJ, Jacobson JD, Corselli JU, Patton WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril. 2006;85:481–6.

    Article  CAS  PubMed  Google Scholar 

  23. Kam TL, Jacobson JD, Patton WC, Corselli JU, Chan PJ. Retention of membrane charge attributes by cryopreserved-thawed sperm and zeta selection. J Assist Reprod Genet. 2007;24:429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ainsworth C, Nixon B, Aitken RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod. 2005;20:2261–70.

    Article  CAS  PubMed  Google Scholar 

  25. Ainsworth C, Nixon B, Jansen RP, Aitken RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod. 2007;22:197–200.

    Article  CAS  PubMed  Google Scholar 

  26. Razavi SH, Nasr-Esfahani MH, Deemeh MR, Shayesteh M, Tavalaee M. Evaluation of zeta and HA-binding methods for selection of spermatozoa with normal morphology, protamine content and DNA integrity. Andrologia. 2010;42:13–9.

    Article  CAS  PubMed  Google Scholar 

  27. Deemeh MR, Nasr-Esfahani MH, Razavi S, Nazem H, Moghadam MS, Tavalaee M. The comparison of HA binding and Zeta methods efficiency in selection of sperm with normal morphology and intact chromatin. J Isfahan Med School. 2009;27:46–56.

    Google Scholar 

  28. Khajavi NA, Razavi S, Mardani M, Tavalaee M, Deemeh MR, Nasr-Esfahani MH. Can Zeta sperm selection method, recover sperm with higher DNA integrity compare to density gradient centrifugation? Iranian J Reprod Med. 2009;7:73–7.

    Google Scholar 

  29. Aitken RJ, Hanson AR, Kuczera L. Electrophoretic sperm isolation: optimization of electrophoresis conditions and impact on oxidative stress. Hum Reprod. 2011;26:1955–64.

    Article  PubMed  Google Scholar 

  30. Fleming SD, Ilad RS, Griffin AM, Wu Y, Ong KJ, Smith HC, et al. Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Hum Reprod. 2008;23:2646–51.

    Article  CAS  PubMed  Google Scholar 

  31. Deemeh MR, Tavalaee M, Ahmadi SM, Kalantari SA, Nasab SVA, Najafi MH, et al. The first report of successfully pregnancy after ICSI with combined DGC/Zeta sperm selection procedure in a couple with eleven repeated fail IVF/ICSI cycles. Int J Fertil Steril. 2010;4:41–3.

    Google Scholar 

  32. Yetunde I, Vasiliki M. Effects of advanced selection methods on sperm quality and ART outcome. Minerva Ginecol. 2013;65:487–96.

    CAS  PubMed  Google Scholar 

  33. Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, et al. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80:1413–9.

    Article  PubMed  Google Scholar 

  34. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93:598–604.

    Article  PubMed  Google Scholar 

  35. Nasr-Esfahani MH, Razavi S, Vahdati AA, Fathi F, Tavalaee M. Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet. 2008;25:197–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kheirollahi-Kouhestani M, Razavi S, Tavalaee M, Deemeh MR, Mardani M, Moshtaghian J, et al. Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum Reprod. 2009;24:2409–16.

    Article  CAS  PubMed  Google Scholar 

  37. Polak de Fried E, Denaday F. Single and twin ongoing pregnancies in two cases of previous ART failure after ICSI performed with sperm sorted using annexin V microbeads. Fertil Steril. 2010;94(351):e15–8.

    PubMed  Google Scholar 

  38. Wilding M, Coppola G, di Matteo L, Palagiano A, Fusco E, Dale B. Intracytoplasmic injection of morphologically selected spermatozoa (IMSI) improves outcome after assisted reproduction by deselecting physiologically poor quality spermatozoa. J Assist Reprod Genet. 2011;28:253–62.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Simon L, Murphy K, Aston KI, Emery BR, Hotaling JM, Carrell DT. Micro-electrophoresis: a non-invasive method of sperm selection based on membrane charge. Fertil Steril. 2015;103:361–6.

    Article  CAS  PubMed  Google Scholar 

  40. World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.

    Google Scholar 

  41. Boitrelle F, Ferfouri F, Petit JM, Segretain D, Tourain C, Bergere M, et al. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum Reprod. 2011;26:1650–8.

    Article  CAS  PubMed  Google Scholar 

  42. Chohan KR, Griffin JT, Lafromboise M, De Jonge CJ, Carrell DT. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl. 2006;27:53–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cornwall GA, Lareyre JJ, Matusik RJ, Hinton BT, Orgebin-Crist MC. Gene expression and epididymal function. In: The epididymis: from molecules to clinical practice—a comprehensive survey of the efferent ducts, the epididymis and the vas deferens. Roubaire, B., Hinton, B.T., (Eds.) New York, 2002, pp. 575.

  44. Syntin P, Dacheux X, Gatti JL, Okamura N, Dacheux JL. Characterization and identification of proteins secreted in the various regions of the adult boar epididymis. Bio Reprod. 1996;55:956–74.

    Article  CAS  Google Scholar 

  45. Yeung CH, Cooper TG, Wagenfeld A, Kirchhoff C, Kliesch S, Poser D, et al. Interaction of the human epididymal protein CD52 (HE5) with epididymal spermatozoa from men and cynomolgus monkey. Mol Reprod Develop. 1997;48:267–75.

    Article  CAS  Google Scholar 

  46. Howes EA, Hurst S, Laslop A, Jones R. Cellular distribution and molecular heterogeneity of MAC393 antigen (clusterin, beta-chain) on the surface membrane of bull spermatozoa. Mol Hum Reprod. 1998;4:673–81.

    Article  CAS  PubMed  Google Scholar 

  47. Kirchhoff C, Osterhoff C, Pera I, Schroter S. Function of human epididymal proteins in sperm maturation. Andrologia. 1998;30:225–32.

    Article  CAS  PubMed  Google Scholar 

  48. Leahy T, Gadella BM. Sperm surface changes and physiological consequences induced by sperm handling and storage. Reprod. 2011;142:759–78.

    Article  CAS  Google Scholar 

  49. Gadella BM, Lopescardozo M, Vangolde LMG, Colenbrander B, Gadella TWJ. Glycolipid migration from the apical to the equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction—evidence for a primary capacitation event in boar spermatozoa. J Cell Sci. 1995;108:935–46.

    CAS  PubMed  Google Scholar 

  50. Bedford JM, Chang MC. Removal of decapacitation factor from seminal plasma by high-speed centrifugation. Am J Physiol. 1962;202:179–87.

    CAS  PubMed  Google Scholar 

  51. Yanagimachi R. Mammalian fertilization. Knobil E, Neill JD. (Eds.) In: The Physiology of Reproduction, 2nd edition, New York, 1994, pp. 189–317.

  52. Norbury CJ, Hickson ID. Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 2001;41:367–401.

    Article  CAS  PubMed  Google Scholar 

  53. Mourdjeva M, Kyurkchiev D, Mandinova A, Altankova I, Kehayov I, Kyurkchiev S. Dynamics of membrane translocation of phosphatidylserine during apoptosis detected by a monoclonal antibody. Apoptosis. 2005;10:209–17.

    Article  CAS  PubMed  Google Scholar 

  54. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995;182:1545–56.

    Article  CAS  PubMed  Google Scholar 

  55. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods. 1995;184:39–51.

    Article  CAS  PubMed  Google Scholar 

  56. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibbons E, Pickett KR, Streeter MC, Warcup AO, Nelson J, Judd AM, et al. Molecular details of membrane fluidity changes during apoptosis and relationship to phospholipase A2 activity. Biochim Biophys Acta. 1828;2013:887–95.

    Google Scholar 

  58. Roux C, Tripogney C, Joanne C, Bresson JL. Sperm chromatin packaging as an indicator of in-vitro fertilization rates. Gynecol Obstet Fertil. 2004;32:792–8.

    Article  CAS  PubMed  Google Scholar 

  59. Hou JW, Chen D, Jeyendran RS. Sperm nuclear maturity in spinal cord-injured men: evaluation by acidic aniline blue stain. Arch Phys Med Rehab. 1995;76:444–5.

    Article  CAS  Google Scholar 

  60. Dadoune JP. Expression of mammalian spermatozoal nucleoproteins. Microscopy Res Tech. 2003;61:56–75.

    Article  CAS  Google Scholar 

  61. Dadoune JP, Mayaux MJ, Guihard-Moscato ML. Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characteristics. Andrologia. 1988;20:211–7.

    Article  CAS  PubMed  Google Scholar 

  62. Hofmann N, Hilscher B. Use of aniline blue to assess chromatin condensation inmorphologically normal spermatozoa in normal and infertile men. Hum Reprod. 1991;6:979–82.

    CAS  PubMed  Google Scholar 

  63. Kim HS, Kang MJ, Kim SA, Oh SK, Kim H, Ku SY, et al. The utility of sperm DNA damage assay using toluidine blue and aniline blue staining in routine semen analysis. Clin Exp Reprod Med. 2013;40:23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sellami A, Chakroun N, Zarrouk SB, Sellami H, Kebaili S, Rebai T, et al. Assessment of chromatin maturity in human spermatozoa: useful aniline blue assay for routine diagnosis of male infertility. Adv Urol. 2013;578631:8.

    Google Scholar 

  65. de Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81:517–24.

    Article  PubMed  Google Scholar 

  66. Schulte RT, Ohl DA, Sigman M, Smith GD. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27:3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Morel F, Mercier S, Roux C, Elmrini T, Clavequin MC, Bresson JL. Interindividual variations in the disomy frequencies of human spermatozoa and their correlation with nuclear maturity as evaluated aniline blue staining. Fertil Steril. 1998;69:1122–7.

    Article  CAS  PubMed  Google Scholar 

  68. Ovari L, Sati L, Stronk J, Borsos A, Ward DC, Huszar G. Double probing individual human spermatozoa: aniline blue staining for persistent histones and fluorescence in situ hybridization for aneuploidies. Fertil Steril. 2010;93:2255–61.

    Article  PubMed  Google Scholar 

  69. Boue F, Blais J, Sullivan R. Surface localization of P34H, an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol Reprod. 1996;54:1009–17.

    Article  CAS  PubMed  Google Scholar 

  70. Boue F, Duquenne C, Lassalle B, Lefèvre A, Finaz C. FLB1, a human protein of epididymal origin that is involved in the sperm-oocyte recognition process. Biol Reprod. 1995;52:267–8.

    Article  CAS  PubMed  Google Scholar 

  71. Lefevre A, Ruis CM, Chokomian S, Duquenne C, Finaz C. Characterization and isolation of SOB2, a human sperm protein with a potential role in oocyte membrane binding. Mol Hum Reprod. 1997;3:507–16.

    Article  CAS  PubMed  Google Scholar 

  72. Yeung CH, Cooper TG, Schroter S, Kirchhoff C, Nieschlag E. Epididymal secretion of CD52 as measured in human seminal plasma by a fluorescence immunosaasy. Mol Hum Reprod. 1998;4:447–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by research grants from EMD Serono, Rockland, Massachusetts, and the Howard and Georgeanna Jones Foundation for Reproductive Medicine, Norfolk, Virginia. The authors wish to thank the UCRM IVF unit and laboratory staff for their commitment and support to this project, for preparing tissue samples, and for helping to collect data on ART outcomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell.

Additional information

Capsule This study is aimed to standardize the microelectrophoresis protocol to isolate sperm with high negative membrane charge. The results from this study suggest that selection of negatively charged sperm at lower current may serve as an important biomarker to select healthy sperm for assisted reproductive treatment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, L., Murphy, K., Aston, K.I. et al. Optimization of microelectrophoresis to select highly negatively charged sperm. J Assist Reprod Genet 33, 679–688 (2016). https://doi.org/10.1007/s10815-016-0700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0700-x

Keywords

Navigation