Skip to main content

Sperm Processing and Selection

  • Chapter
  • First Online:
Male Infertility

Abstract

Assisted reproductive technology (ART) use sperm sorting methods to select viable sperm from semen samples. Conventional sperm sorting techniques currently use swim-up and density gradient centrifugation. These methods use multiple centrifugation steps, which have been shown to generate reactive oxygen species (ROS) that decrease DNA integrity and damage sperm. Newer technologies, such as motile sperm organelle morphology examination (MSOME), electrophoresis and magnetically activated cell sorting, and microfluidics, eliminate the centrifugation steps, reduce oxidative stress, and improve the selection of sperm with higher DNA integrity, normal morphology, and motility and may help improve assisted reproductive outcomes. In this chapter, we discuss some centrifugation- and non-centrifugation-based techniques for sperm selection and their effect on sperm quality and ART outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Control CfD, Prevention. American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. 2009 assisted reproductive technology success rates: national summary and fertility clinic reports. Atlanta: Centers for Disease Control and Prevention; 2011.

    Google Scholar 

  2. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thonneau P, Marchand S, Tallec A, Ferial M-L, Ducot B, Lansac J, et al. Incidence and main causes of infertility in a resident population (1 850 000) of three French regions (1988–1989). Hum Reprod. 1991;6(6):811–6.

    Article  CAS  PubMed  Google Scholar 

  4. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ Jr, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril. 2000;73(3):459–64.

    Article  CAS  PubMed  Google Scholar 

  5. Agarwal A, Sharma RK, Sharma R, Assidi M, Abuzenadah AM, Alshahrani S, et al. Characterizing semen parameters and their association with reactive oxygen species in infertile men. Reprod Biol Endocrinol. 2014;12(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996;48(6):835–50.

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertil Steril. 2006;86(3):503–12.

    Article  CAS  PubMed  Google Scholar 

  8. Agarwal A, Sharma RK, Nallella KP, Thomas AJ Jr, Alvarez JG, Sikka SC. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril. 2006;86(4):878–85.

    Article  CAS  PubMed  Google Scholar 

  9. de Lamirande E, Cagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med. 1993;14(2):157–66.

    Article  PubMed  Google Scholar 

  10. Garrido N, Meseguer M, Simon C, Pellicer A, Remohi J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J Androl. 2004;6(1):59–66.

    CAS  PubMed  Google Scholar 

  11. Desai N, Sharma R, Makker K, Sabanegh E, Agarwal A. Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril. 2009;92(5):1626–31.

    Article  PubMed  Google Scholar 

  12. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28(6):684–703.

    Article  CAS  PubMed  Google Scholar 

  13. Agarwal A, Tvrda E, Sharma R. Relationship amongst teratozoospermia, seminal oxidative stress and male infertility. Reprod Biol Endocrinol. 2014;12(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.

    Article  PubMed  Google Scholar 

  15. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727–33.

    Article  CAS  PubMed  Google Scholar 

  16. Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. Aust N Z J Obstet Gynaecol. 2007;47(3):216–21.

    Article  PubMed  Google Scholar 

  17. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935–50.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Agarwal A, Cho C-L, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6(Suppl 4):S720.

    PubMed  PubMed Central  Google Scholar 

  19. Sobrero AJ, MacLeod J. The immediate postcoital test. Fertil Steril. 1962;13:184–9.

    Article  CAS  PubMed  Google Scholar 

  20. Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142–50.

    Article  CAS  PubMed  Google Scholar 

  21. Ng FLH, Liu DY, Baker HWG. Comparison of Percoll, mini-Percoll and swim-up methods for sperm preparation from abnormal semen samples. Hum Reprod. 1992;7(2):261–6.

    Article  CAS  PubMed  Google Scholar 

  22. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9(6):367–76.

    Article  CAS  PubMed  Google Scholar 

  23. Sakkas D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2013;99(4):1023–9.

    Article  PubMed  Google Scholar 

  24. Henkel R, Schill WB. Sperm separation in patients with urogenital infections. Andrologia. 1998;30(S1):91–7.

    Article  PubMed  Google Scholar 

  25. Björndahl L, Mortimer D, Barratt CL, Castilla JA, Menkveld R, Kvist U, et al. A practical guide to basic laboratory andrology. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  26. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  27. Jameel T. Sperm swim-up: a simple and effective technique of semen processing for intrauterine insemination. J Pak Med Assoc. 2008;58(2):71–4.

    PubMed  Google Scholar 

  28. Ren SS, Sun GH, Ku CH, Chen DC, Wu GJ. Comparison of four methods for sperm preparation for IUI. Arch Androl. 2004;50(3):139–43.

    Article  PubMed  Google Scholar 

  29. Oshio S, Kaneko S, Iizuka R, Mohri H. Effects of gradient centrifugation on human sperm. Arch Androl. 1987;19(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal A, Gupta S, Sharma R. Sperm preparation for intrauterine insemination using density gradient separation. In: Andrological evaluation of male infertility. Cham: Springer; 2016. p. 101–7.

    Chapter  Google Scholar 

  31. Beydola T, Sharma RK, Lee W, Agarwal A, Rizk B, Aziz N, et al. Sperm preparation and selection techniques. In: Rizk B, Aziz N, Agarwal A, editors. Male infertility practice. New Delhi: Jaypee Brothers Medical Publishers; 2013. p. 244–51.

    Google Scholar 

  32. Zini A, Finelli A, Phang D, Jarvi K. Influence of semen processing technique on human sperm DNA integrity. Urology. 2000;56(6):1081–4.

    Article  CAS  PubMed  Google Scholar 

  33. Brackett NL, Davi RC, Padron OF, Lynne CM. Seminal plasma of spinal cord injured men inhibits sperm motility of normal men. J Urol. 1996;155(5):1632–5.

    Article  CAS  PubMed  Google Scholar 

  34. Agarwal A, Gupta S, Sharma R. Procedure for retrograde ejaculate. In: Andrological evaluation of male infertility. Cham: Springer; 2016. p. 97–100.

    Chapter  Google Scholar 

  35. Agarwal A, Gupta S, Sharma R. Cryopreservation of client depositor semen. In: Andrological evaluation of male infertility. Cham: Springer; 2016. p. 113–33.

    Chapter  Google Scholar 

  36. Nawroth F, Isachenko V, Dessole S, Rahimi G, Farina M, Vargiu N, et al. Vitrification of human spermatozoa without cryoprotectants. Cryo Letters. 2002;23(2):93–102.

    CAS  PubMed  Google Scholar 

  37. Isachenko V, Isachenko E, Montag M, Zaeva V, Krivokharchenko I, Nawroth F, et al. Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reprod Biomed Online. 2005;10(3):350–4.

    Article  PubMed  Google Scholar 

  38. Esteves SC, Miyaoka R, Orosz JE, Agarwal A. An update on sperm retrieval techniques for azoospermic males. Clinics. 2013;68:99–110.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ishijima SA, Okuno M, Mohri H. Zeta potential of human X- and Y-bearing sperm. Int J Androl. 1991;14(5):340–7.

    Article  CAS  PubMed  Google Scholar 

  40. Chan PJ, Jacobson JD, Corselli JU, Patton WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril. 2006;85(2):481–6.

    Article  CAS  PubMed  Google Scholar 

  41. Kam TL, Jacobson JD, Patton WC, Corselli JU, Chan PJ. Retention of membrane charge attributes by cryopreserved-thawed sperm and zeta selection. J Assist Reprod Genet. 2007;24(9):429–34.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Razavi SH, Nasr-Esfahani MH, Deemeh MR, Shayesteh M, Tavalaee M. Evaluation of zeta and HA-binding methods for selection of spermatozoa with normal morphology, protamine content and DNA integrity. Andrologia. 2010;42(1):13–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dirican EK, Özgün OD, Akarsu S, Akın KO, Ercan Ö, Uğurlu M, et al. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J Assist Reprod Genet. 2008;25(8):375–81.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Polak de Fried E, Denaday F. Single and twin ongoing pregnancies in two cases of previous ART failure after ICSI performed with sperm sorted using annexin V microbeads. Fertil Steril. 2010;94(1):351.e15–8.

    Article  Google Scholar 

  45. Gianaroli L, Magli MC, Collodel G, Moretti E, Ferraretti AP, Baccetti B. Sperm head’s birefringence: a new criterion for sperm selection. Fertil Steril. 2008;90(1):104–12.

    Article  PubMed  Google Scholar 

  46. Rappa KL, Rodriguez HF, Hakkarainen GC, Anchan RM, Mutter GL, Asghar W. Sperm processing for advanced reproductive technologies: where are we today? Biotechnol Adv. 2016;34(5):578–87.

    Article  PubMed  Google Scholar 

  47. Bartoov B, Berkovitz A, Eltes F, Kogosowski A, Menezo Y, Barak Y. Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl. 2002;23(1):1–8.

    Article  PubMed  Google Scholar 

  48. Bartoov B, Berkovitz A, Eltes F, Kogosovsky A, Yagoda A, Lederman H, et al. Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril. 2003;80(6):1413–9.

    Article  PubMed  Google Scholar 

  49. Mashiach R, Fisch B, Eltes F, Tadir Y, Ovadia J, Bartoov B. The relationship between sperm ultrastructural features and fertilizing capacity in vitro. Fertil Steril. 1992;57(5):1052–7.

    Article  CAS  PubMed  Google Scholar 

  50. Franco JG, Baruffi RLR, Mauri AL, Petersen CG, Oliveira JBA, Vagnini L. Significance of large nuclear vacuoles in human spermatozoa: implications for ICSI. Reprod Biomed Online. 2008;17(1):42–5.

    Article  PubMed  Google Scholar 

  51. Bradley C, McArthur S, Gee A, Weiss K, Schmidt U, Toogood L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016;4(5):903–10.

    Article  CAS  PubMed  Google Scholar 

  52. Teixeira DM, Barbosa MA, Ferriani RA, Navarro PA, Raine-Fenning N, Nastri CO, Martins WP. Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cocharane Database System Rev. 2013;25(7):CD010167. https://doi.org/doi:10.1002/14651858. CD01067.pub2.

  53. Huszar G, Jakab A, Sakkas D, Ozenci C-C, Cayli S, Delpiano E, et al. Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod Biomed Online. 2007;14(5):650–63.

    Article  PubMed  Google Scholar 

  54. Worrilow KC, Eid S, Woodhouse D, Perloe M, Smith S, Witmyer J, et al. Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes—multicenter, double-blinded and randomized controlled trial. Hum Reprod. 2013;28(2):306–14.

    Article  CAS  PubMed  Google Scholar 

  55. Ainsworth C, Nixon B, Aitken RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod. 2005;20(8):2261–70.

    Article  CAS  PubMed  Google Scholar 

  56. Ainsworth C, Nixon B, Jansen RPS, Aitken RJ. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod. 2007;22(1):197–200.

    Article  CAS  PubMed  Google Scholar 

  57. Simon L, Murphy K, Aston KI, Emery BR, Hotaling JM, Carrell DT. Optimization of microelectrophoresis to select highly negatively charged sperm. J Assist Reprod Genet. 2016;33(6):679–88.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Aitken RJ, Hanson AR, Kuczera L. Electrophoretic sperm isolation: optimization of electrophoresis conditions and impact on oxidative stress. Hum Reprod. 2011;26(8):1955–64.

    Article  PubMed  Google Scholar 

  59. Fleming SD, Ilad RS, Griffin AMG, Wu Y, Ong KJ, Smith HC, et al. Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Hum Reprod. 2008;23(12):2646–51.

    Article  CAS  PubMed  Google Scholar 

  60. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods. 1995;184(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Sharma RK, Sikka SC, Thomas AJ, Falcone T, Agarwal A. Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril. 2003;80(3):531–5.

    Article  PubMed  Google Scholar 

  62. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    Article  CAS  PubMed  Google Scholar 

  63. Glander HJ, Schaller J. Binding of annexin V to plasma membranes of human spermatozoa: a rapid assay for detection of membrane changes after cryostorage. Mol Hum Reprod. 1999;5(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  64. Grunewald S, Paasch U, Glander H-J. Enrichment of non–apoptotic human spermatozoa after cryopreservation by immunomagnetic cell sorting. Cell Tissue Bank. 2001;2(3):127–33.

    Article  CAS  PubMed  Google Scholar 

  65. Paasch U, Grunewald S, Agarwal A, Glandera H-J. Activation pattern of caspases in human spermatozoa. Fertil Steril. 2004;81:802–9.

    Article  CAS  PubMed  Google Scholar 

  66. Paasch U, Grunewald S, Fitzl G, Glander H-J. Deterioration of plasma membrane is associated with activated caspases in human spermatozoa. J Androl. 2003;24(2):246–52.

    Article  CAS  PubMed  Google Scholar 

  67. Said TM, Grunewald S, Paasch U, Glander H-J, Baumann T, Kriegel C, et al. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online. 2005;10(6):740–6.

    Article  PubMed  Google Scholar 

  68. Said T, Agarwal A, Grunewald S, Rasch M, Baumann T, Kriegel C, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod. 2006;74(3):530–7.

    Article  CAS  PubMed  Google Scholar 

  69. Grunewald S, Reinhardt M, Blumenauer V, Said TM, Agarwal A, Abu Hmeidan F, et al. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 2009;92(2):572–7.

    Article  PubMed  Google Scholar 

  70. Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed. 1998;37(5):550–75.

    Article  CAS  Google Scholar 

  71. Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671–5.

    Article  CAS  PubMed  Google Scholar 

  72. Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):75–81.

    Article  PubMed  Google Scholar 

  73. Tasoglu S, Safaee H, Zhang X, Kingsley JL, Catalano PN, Gurkan UA, et al. Exhaustion of racing sperm in nature-mimicking microfluidic channels during sorting. Small. 2013;9(20):3374–84.

    Article  CAS  PubMed  Google Scholar 

  74. Xie L, Ma R, Han C, Su K, Zhang Q, Qiu T, et al. Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem. 2010;56(8):1270–8.

    Article  CAS  PubMed  Google Scholar 

  75. Ko Y-J, Maeng J-H, Lee B-C, Lee S, Hwang SY, Ahn Y. Separation of progressive motile sperm from mouse semen using on-chip chemotaxis. Anal Sci. 2012;28(1):27.

    Article  CAS  PubMed  Google Scholar 

  76. Ohta AT, Garcia M, Valley JK, Banie L, Hsu H-Y, Jamshidi A, et al. Motile and non-motile sperm diagnostic manipulation using. Lab Chip. 2010;10(23):3213–7.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang X, Khimji I, Gurkan UA, Safaee H, Catalano PN, Keles HO, et al. Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip. 2011;11(15):2535–40.

    Article  CAS  PubMed  Google Scholar 

  78. Souza Setti A, Ferreira RC, Paes de Almeida Ferreira Braga D, de Cássia Sávio Figueira R, Iaconelli A, Borges E. Intracytoplasmic sperm injection outcome versus intracytoplasmic morphologically selected sperm injection outcome: a meta-analysis. Reprod Biomed Online. 2010;21(4):450–5.

    Article  PubMed  Google Scholar 

  79. Chung Y, Zhu X, Gu W, Smith GD, Takayama S. Microscale integrated sperm sorter. In: Minteer SD, editor. Microfluidic techniques: reviews and protocols. Totowa: Humana Press; 2006. p. 227–44.

    Google Scholar 

  80. Cheng S-Y, Heilman S, Wasserman M, Archer S, Shuler ML, Wu M. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip. 2007;7(6):763–9.

    Article  CAS  PubMed  Google Scholar 

  81. Lopez-Garcia MC, Monson RL, Haubert K, Wheeler MB, Beebe DJ. Sperm motion in a microfluidic fertilization device. Biomed Microdevices. 2008;10(5):709–18.

    Article  CAS  PubMed  Google Scholar 

  82. Asghar W, Velasco V, Kingsley JL, Shoukat MS, Shafiee H, Anchan RM, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3(10):1671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ebner T, Shebl O, Moser M, Mayer RB, Arzt W, Tews G. Easy sperm processing technique allowing exclusive accumulation and later usage of DNA-strandbreak-free spermatozoa. Reprod Biomed Online. 2011;22(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  84. Tung C-K, Ardon F, Fiore AG, Suarez SS, Wu M. Cooperative roles of biological flow and surface topography in guiding sperm migration revealed by a microfluidic model. Lab Chip. 2014;14(7):1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Eamer L, Vollmer M, Nosrati R, San Gabriel MC, Zeidan K, Zini A, et al. Turning the corner in fertility: high DNA integrity of boundary-following sperm. Lab Chip. 2016;16(13):2418–22.

    Article  CAS  PubMed  Google Scholar 

  86. Seiringer M, Maurer M, Shebl O, Dreier K, Tews G, Ziehr S, et al. Efficacy of a sperm-selection chamber in terms of morphology, aneuploidy and DNA packaging. Reprod Biomed Online. 2013;27(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  87. Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm research. Trends Biotechnol. 2015;33(4):221–9.

    Article  CAS  PubMed  Google Scholar 

  88. Matsuura K, Uozumi T, Furuichi T, Sugimoto I, Kodama M, Funahashi H. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertil Steril. 2013;99(2):400–7.

    Article  PubMed  Google Scholar 

  89. Samuel R, Badamjav O, Murphy KE, Patel DP, Son J, Gale BK, et al. Microfluidics: the future of microdissection TESE? Syst Biol Reprod Med. 2016;62(3):161–70.

    Article  PubMed  Google Scholar 

  90. De Wagenaar B, Berendsen JTW, Bomer J, Olthuis W, van den Berg A, Segerink L. Microfluidic single sperm entrapment and analysis. Lab Chip. 2015;15(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  91. Tsai VF, Chang H-C, Hsieh J-T, Wo AM. Application of microfluidic technologies to the quantification and manipulation of sperm. Urol Sci. 2016;27(2):56–9.

    Article  Google Scholar 

  92. Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315–21.e1.

    Article  CAS  PubMed  Google Scholar 

  93. Clark SG, Haubert K, Beebe DJ, Ferguson CE, Wheeler MB. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip. 2005;5(11):1229–32.

    Article  CAS  PubMed  Google Scholar 

  94. Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD. IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod. 2006;21(2):477–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Agarwal, A. (2020). Sperm Processing and Selection. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics