Skip to main content

Advertisement

Log in

Substrates and supplements for hESCs: a critical review

  • Stem Cell Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Different laboratories around the world have succeeded in establishing human embryonic stem cell (hESC) lines. However, culture conditions vary considerably among the protocols used and the vast majority of the lines at some stage of their creation have been in contact with an animal derived component. One of the main problems to be overcome for the generation of a clinical-grade hESC line is the choice of a substrate and medium that allows derivation and culture, where animal derived components are kept to a minimum or completely excluded.

Materials and methods

The following review describes past and more recent achievements in the creation and culturing of hESC. It describes protocols, giving special attention to the matrices and supplements used for derivation, mantainance and cryostorage, considering whether they included defined, undefined and/or animal-derived components in their formulations.

Conclusion

This information shall be useful for the creation and choice of new substrates and supplements for future research in the field of hESC for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol. 2000;227:271–8.

    Article  PubMed  CAS  Google Scholar 

  2. Amit M, Margulets V, Segev H, et al. Human feeder layers for human embryonic stem cells. Biol Reprod. 2003;68:2150–6.

    Article  PubMed  CAS  Google Scholar 

  3. Arabadjiev B, Petkova R, Chakarov S, Momchilova A, Pankov R. Do we need more human embryonic stem cell lines? Biotechnol Biotechnol Equip. 2010;24(3):1921–7.

    Article  Google Scholar 

  4. Armstrong L, Hughes O, Yung S, et al. The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet. 2006;15(11):1894–913.

    Article  PubMed  CAS  Google Scholar 

  5. Beattie GM, Lopez AD, Bucay N, et al. Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells. 2005;23:489–95.

    Article  PubMed  CAS  Google Scholar 

  6. Bendall SC, Stewart MH, Menendez P, et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007;448:1015–21.

    Article  PubMed  CAS  Google Scholar 

  7. Brafman DA, Shah KD, Fellner T, Chien S, Willert K. Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev. 2009;18(8):1141–54.

    Article  PubMed  Google Scholar 

  8. Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S. Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials. 2010;31(34):9135–44.

    Article  PubMed  CAS  Google Scholar 

  9. Brimble SN, Zeng X, Weiler DA, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 2004;13(6):585–97.

    Article  PubMed  CAS  Google Scholar 

  10. Brindley DA, Davie NL, Culme-Seymour EJ, Mason C, Smith DW, Rowley JA. Peak serum: implications of serum supply for cell therapy manufacturing. Regen Med. 2012;7(1):7–13.

    Article  PubMed  Google Scholar 

  11. Brook FA, Cowley SA, Evans EP, Turner K, James WS, Mardon HJ. Derivation and characterisation of the human embryonic stem cell line, OxF1. In Vitro Cell Dev Biol Anim. 2010;46:173–7.

    Article  PubMed  Google Scholar 

  12. Burdick JA, Vunjak-Novakovic GV. Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A. 2009;15:205–19.

    Article  PubMed  CAS  Google Scholar 

  13. Camarasa MV, Kerr RW, Sneddon SF, et al. Derivation of Man-1 and Man-2 research grade human embryonic stem cell lines. In Vitro Cell Dev Biol-Animal. 2010;46:386–94.

    Article  Google Scholar 

  14. Chavez SL, Meneses JJ, Nguyen HN, Kim SK, Pera RA. Characterization of six new human embryonic stem cell lines (HSF7, -8, -9, -10, -12, and -13) derived under minimal-animal component conditions. Stem Cells Dev. 2008;17(3):535–46.

    Article  PubMed  CAS  Google Scholar 

  15. Chen HF, Chuang CY, Shieh YK, Chang HW, Ho HN, Kuo HC. Novel autogenic feeders derived from human embryonic stem cells (hESCs) support an undifferentiated status of hESCs in xeno-free culture conditions. Hum Reprod. 2009;24(5):1114–25.

    Article  PubMed  CAS  Google Scholar 

  16. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8(5):424–9. doi:10.1038/nmeth.1593.

    Article  PubMed  CAS  Google Scholar 

  17. Crook JM, Peura TT, Kravets L, et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell. 2007;1(5):490–4.

    Article  CAS  Google Scholar 

  18. Darr H, Mayshar Y, Benvenisty N. Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development. 2006;133:1193–201.

    Article  PubMed  CAS  Google Scholar 

  19. Elefanty AG, Stanley EG. Defined substrates for pluripotent stem cells: are we there yet? Nat Methods. 2010;7:967–8.

    Article  PubMed  CAS  Google Scholar 

  20. Ellerstrom C, Strehl R, Moya K, et al. Derivation of a xeno-free human embryonic stem cell line. Stem Cells. 2006;24:2170–6.

    Article  PubMed  Google Scholar 

  21. Fletcher JM, Ferrier PM, Gardner JO, et al. Variations in humanized and defined culture conditions supporting derivation of new human embryonic stem cell lines. Cloning Stem Cells. 2006;8(4):319–34.

    Article  PubMed  CAS  Google Scholar 

  22. Genbacev O, Krtolica A, Zdravkovic T, et al. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil Steril. 2005;83:1517–29.

    Article  PubMed  Google Scholar 

  23. Hakala H, Rajala K, Ojala M, et al. Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Engineering Part A, 2009;1775-1785.

  24. Heins N, Englund MC, Sjöblom C, et al. Derivation, characterization, and differentiation of human embryonic stem cells. Stem Cells. 2004;22(3):367–76.

    Article  PubMed  Google Scholar 

  25. Hovatta O, Mikkola M, Gertow K, et al. A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod. 2003;18:1404–9.

    Article  PubMed  Google Scholar 

  26. Ilic D, Giritharan G, Zdravkovic T, et al. Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Dev. 2009;18(9):1343–9.

    Article  PubMed  CAS  Google Scholar 

  27. Ilic D, Stephenson E, Wood V, et al. Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy. 2012;14(1):122–8.

    Article  PubMed  CAS  Google Scholar 

  28. Inamdar MS, Venu P, Srinivas MS, Rao K, VijayRaghavan K. Derivation and characterization of two sibling human embryonic stem cell lines from discarded Grade III embryos. Stem Cells Dev. 2009;18(3):423–33.

    Article  PubMed  CAS  Google Scholar 

  29. Inzunza J, Gertow K, Stromberg MA, et al. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells. 2005;23:544–9.

    Article  PubMed  CAS  Google Scholar 

  30. Irwin EF, Gupta R, Dashti DC, Healy KE. Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials. 2011;32(29):6912–9.

    Article  PubMed  CAS  Google Scholar 

  31. Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods. 2010;7(12):989–94.

    Article  PubMed  CAS  Google Scholar 

  32. Klimanskaya I, Chung Y, Meisner L, Johnson J, West M, Lanza R. Human embryonic stem cells derived without feeder cells. Lancet. 2005;365:1636–41.

    Article  PubMed  CAS  Google Scholar 

  33. Klimanskaya I, Chung Y, Becker S, Lu S, Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444:481–5.

    Article  PubMed  CAS  Google Scholar 

  34. Kumar N, Hinduja I, Nagvenkar P, et al. Derivation and characterization of two genetically unique human embryonic stem cell lines on in-house-derived human feeders. Stem Cells Dev. 2009;18(3):435–45.

    Article  PubMed  CAS  Google Scholar 

  35. Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in cultura. Cell Stem Cell. 2011;8:106–18.

    Article  PubMed  CAS  Google Scholar 

  36. Lee S, Kim J, Park TJ, Shin Y, Lee SY, Han YM, et al. The effects of the physical properties of culture substrates on the growth and differentiation of human embryonic stem cells. Biomaterials. 2011;32(34):8816–29.

    Article  PubMed  CAS  Google Scholar 

  37. Lees JG, Lim SA, Croll T, et al. Transplantation of 3D scaffolds seeded with human embryonic stem cells: biological features of surrogate tissue and teratoma-forming potential. Regen Med. 2007;2(3):289–300.

    Article  PubMed  CAS  Google Scholar 

  38. Lei T, Jacob S, Ajil-Zaraa I, et al. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges. Cell Res. 2007;17(8):682–8.

    Article  PubMed  CAS  Google Scholar 

  39. Levenberg S, Huang N, Lavik E, Rogers A, Itskovitz-Eldor J, Langer R. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci USA. 2003;100:12741–6.

    Article  PubMed  CAS  Google Scholar 

  40. Levenstein ME, Ludwig TE, Xu RH, et al. Basic fibroblast growth factor support of human embryonic stem cell self-renewal. Stem Cells. 2006;24(3):568–74.

    Article  PubMed  CAS  Google Scholar 

  41. Lim HL, Chuang JC, Tran T, Arya G, Varghese S. Dynamic electromechanical hydrogel matrices for stem cell culture. Adv Funct Mater. 2011;21:55–63.

    Article  CAS  Google Scholar 

  42. Lin G, OuYang Q, Zhou X, et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res. 2007;17(12):999–1007.

    Article  PubMed  CAS  Google Scholar 

  43. Lu J, Hou R, Booth CJ, Yang S, Snyder M. Defined culture conditions of human embryonic stem cells. PNAS. 2006;103(15):5688–93.

    Article  PubMed  CAS  Google Scholar 

  44. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24(2):185–7.

    Article  PubMed  CAS  Google Scholar 

  45. Mai Q, Yu Y, Li T, et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res. 2007;17:1008–19.

    Article  PubMed  CAS  Google Scholar 

  46. Meng G, Liu S, Krawetz R, Chan M, Chernos J, Rancourt DE. A novel method for generating xeno-free human feeder cells for human embryonic stem cell culture. Stem Cells Dev. 2008;17:413–22.

    Article  PubMed  CAS  Google Scholar 

  47. Meng G, Liu S, Li X, Krawetz R, Rancourt DE. Extracellular matrix isolated from foreskin fibroblasts supports long-term xeno-free human embryonic stem cell culture. Stem Cells Dev. 2010;19(4):547–56.

    Article  PubMed  CAS  Google Scholar 

  48. Montes R, Ligero G, Sanchez L, et al. Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-β and IGF-II. Cell Res. 2009;19:698–709.

    Article  PubMed  CAS  Google Scholar 

  49. Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA. Culture of human pluripotent stem cells using completely defined conditions on a recombinant E-cadherin substratum. BMC Dev Biol. 2010;10:60.

    Article  PubMed  Google Scholar 

  50. Peiffer I, Barbet R, Zhou YP, et al. Use of xenofree matrices and molecularly-defined media to control human embryonic stem cell pluripotency: effect of low physiological TGF-beta concentrations. Stem Cells Dev. 2008;17(3):519–33.

    Article  PubMed  CAS  Google Scholar 

  51. Placzek MR, Chung I-M, Macedo HM, et al. Stem cell bioprocessing: fundamentals and principles. J R Soc Interface. 2009;6:209–32.

    Article  PubMed  CAS  Google Scholar 

  52. Priddle H, Allegrucci C, Burridge P, et al. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2. In Vitro Cell Dev Biol—Animal. 2010;46:367–75.

    Article  Google Scholar 

  53. Rajala K, Hakala H, Panula S, et al. Testing of nine different xeno-free culture media for human embryonic stem cell cultures. Hum Reprod. 2007;22(5):1231–8.

    Article  PubMed  CAS  Google Scholar 

  54. Rajala K, Lindroos B, Hussein SM, et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One. 2010;5(4):e10246.

    Article  PubMed  Google Scholar 

  55. Raya A, Rodríguez-Pizà I, Arán B, Consiglio A, Barri PN, Veiga A, et al. Generation of cardiomyocytes from new human embryonic stem cell lines derived from poor-quality blastocysts. Cold Spring Harb Symp Quant Biol. 2008;73:127–35.

    Article  PubMed  CAS  Google Scholar 

  56. Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells. 2003;21:546–56.

    Article  PubMed  CAS  Google Scholar 

  57. Riz I, Hawley RG. Genomic stability in stem cells. In: Rajasekhar VK, Vemuri MC, editors. Regulatory networks in stem cells, stem cell biology and regenerative medicine. Humana Press. 2009. p. 67-74.

  58. Ruggeri RR, Watanabe Y, Meirelles F, Bressan FF, Frantz N, Bos-Mikich A. The use of parthenotegenetic and IVF bovine blastocysts as a model for the creation of human embryonic stem cells under defined conditions. J Assist Reprod Genet. 2012;29(10):1039–43.

    Article  PubMed  CAS  Google Scholar 

  59. Sidhu KS, Lie KH, Tuch BE. Transgenic human fetal fibroblasts as feeder layer for human embryonic stem cell lineage selection. Stem Cells Dev. 2006;15:741–7.

    Article  PubMed  CAS  Google Scholar 

  60. Skottman H, Hovatta O. Culture conditions for human embryonic stem cells. Reproduction. 2006;132:691–8.

    Article  PubMed  CAS  Google Scholar 

  61. Skottman H, Dilber MS, Hovatta O. The derivation of clinical-grade human embryonic stem cell lines. FEBS Lett. 2006;580:2875–8.

    Article  PubMed  CAS  Google Scholar 

  62. Spits C, Mateizel I, Geens M, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnology. 2008;26:1361–3.

    Article  CAS  Google Scholar 

  63. Steiner D, Khaner H, Cohen M, et al. Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnology. 2010;28(4):361–6.

    Article  CAS  Google Scholar 

  64. Stojkovic P, Lako M, Stewart R, et al. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells. 2005;23(3):306–14.

    Article  PubMed  CAS  Google Scholar 

  65. Stojkovic P, Lako M, Przyborski S, et al. Human-serum matrix supports undifferentiated growth of human embryonic stem cells. Stem Cells. 2005;23(7):895–902.

    Article  PubMed  CAS  Google Scholar 

  66. Strelchenko N, Verlinsky O, Kukharenko V, Verlinsky Y. Morula-derived human embryonic stem cells. Reprod Biomed Online. 2004;9:623–9.

    Article  PubMed  Google Scholar 

  67. Ström S, Inzunza J, Grinnemo K, et al. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Hum Reprod. 2007;22(12):3051–8.

    Article  PubMed  Google Scholar 

  68. Sudheer S, Bhushan R, Fauler B, Lehrach H, Adjaye J. FGF inhibition directs BMP4-mediated differentiation of human embryonic stem cells to syncytiotrophoblast. Stem Cells Dev. 2012;21(16):2987–3000.

    Article  PubMed  CAS  Google Scholar 

  69. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    Article  PubMed  CAS  Google Scholar 

  70. Tropel P, Tournois J, Côme J, et al. High-efficiency derivation of human embryonic stem cell lines following pre-implantation genetic diagnosis In Vitro. Cell Dev Biol-Animal. 2010;46:376–85.

    Article  Google Scholar 

  71. Vaajasaari H, Ilmarinen T, Juuti-Uusitalo K, et al. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell–derived retinal pigment epithelial cells. Mol Vis. 2011;17:558–75.

    PubMed  CAS  Google Scholar 

  72. Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One. 2009;4(6):e6082. doi:10.1371/journal.pone.0006082.

    Article  PubMed  Google Scholar 

  73. Van der Jeught M, O'Leary T, Ghimire S, Lierman S, Duggal G, Versieren K, et al. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the Number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev. 2012. ahead of print. doi:10.1089/scd.2012.0256.

  74. Villa-Diaz LG, Nandivada H, Ding J, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnology. 2010;28(6):581–3.

    Article  CAS  Google Scholar 

  75. Willerth S, Schaffer D. Scaffold materials for hES cell culture and differentiation. In: Ducheyne P, Healy KE, Hutmacher DW, Grainger DW, Kirkpatrick CJ (eds.) Comprehensive Biomaterials (Vol. 5) Elsevier. 2011. p. 95–113.

  76. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2(3):185–90.

    Article  PubMed  CAS  Google Scholar 

  77. Yao S, Chen S, Clark J, et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. PNAS. 2006;103(18):6907–12.

    Article  PubMed  CAS  Google Scholar 

  78. Yap LY, Li J, Phang IY, Ong LT, Ow JZ, Goh JC, et al. Defining a threshold surface density of vitronectin for the stable expansion of human embryonic stem cells. Tissue Eng Part C Methods. 2011;17(2):193–207.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang X, Stojkovic P, Przyborski S, et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells. 2006;24:2669–76.

    Article  PubMed  CAS  Google Scholar 

  80. Zhou J, Ou-Yang Q, Li J, Zhou X-Y, Lin G, Lu G-X. Human feeder cells support establishment and definitive endoderm differentiation of human embryonic stem cells. Stem Cells Dev. 2008;17:737–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work was partially funded by a PLISSER training fellowship (Programa Latinoamericano de Investigación en Salud Sexual y Reproductiva A.C.).

Disclosure statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melisa Candela Crocco.

Additional information

Capsule

This is a comprehensive review on the past and present methods employed for the creation of new embryonic stem cell lines giving special emphasis to the substrate and supplements used on their generation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crocco, M.C., Fratnz, N. & Bos-Mikich, A. Substrates and supplements for hESCs: a critical review. J Assist Reprod Genet 30, 315–323 (2013). https://doi.org/10.1007/s10815-012-9914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9914-8

Keywords

Navigation