Skip to main content
Log in

Derivation of Man-1 and Man-2 research grade human embryonic stem cell lines

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We report here the derivation of two new human embryonic stem cell lines, Man-1 and Man-2, and their full characterization as novel pluripotent stem cell lines. Man-1 was derived from an embryo surplus to requirement from routine IVF, while Man-2 was obtained from an oocyte classified as failed to fertilise and subsequently chemically activated. We report the characterisation of pluripotency and the differentiation potential of these lines. Work is in progress to establish novel methods of stem cell derivation and culture, which will avoid the use of xenobiotics and be relevant to clinical production of human embryonic stem cell lines. Both newly derived human embryonic stem cell lines will be available for the research community from the UK Stem Cell Bank (http://www.ukstemcellbank.org.uk).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Amit M.; Margulets V.; Segev H.; Shariki K.; Laevsky I.; Coleman R.; Itskovitz-Eldor J. Human feeder layers for human embryonic stem cells. Biol. Reprod. 68: 2150–2156; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Amit M.; Shariki C.; Margulets V.; Itskovitz-Eldor J. Feeder-layer and serum-free culture of human embryonic stem cells. Biol. Reprod. 70(3): 837–845; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Baxter M. A.; Camarasa M. V.; Bates N.; Small F.; Murray P.; Edgar D.; Kimber S. J. Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res. 3: 28–38; 2009.

    Article  CAS  Google Scholar 

  • Bongso A.; Fong C. Y.; Ng S. C.; Ratnam S. Isolation and culture of inner cell mass cells from human blastocysts. Hum. Reprod. 9(11): 2110–2117; 1994.

    CAS  PubMed  Google Scholar 

  • Camarasa M. V.; Brison D. R.; Kimber S. J.; Handyside A. H. H. Naturally immortalised fibroblast lines support human embryonic stem cell growth. Cloning Stem Cells 11(3): 1–10; 2009.

    Article  CAS  Google Scholar 

  • Catalina P.; Montes R.; Ligero G.; Sanchez L.; de la Cueva T.; Bueno C.; Leone P. E.; Menendez P. Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol. Cancer 7: 73–85; 2008.

    Article  CAS  Google Scholar 

  • Chen A. E.; Egli D.; Niakan K.; Deng J.; Akutsu H.; Yamaki M.; Cowan C.; Fitz-Gerald C.; Zhang K.; Melton D. A.; Eggan K. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell. 4(2): 103–106; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Cheng L.; Hammond H.; Ye Z.; Zhan X.; Dravid G. Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells 21: 131–142; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Cheon S. H.; Kim S. J.; Jo J. Y.; Ryu W. J.; Rhee K.; Roh S. I. Defined feeder-free culture system of human embryonic stem cells. Biol. Reprod. 74: 611–618; 2006.

    CAS  Google Scholar 

  • Choo A.; Padmanabhan J.; Chin A.; Fong W. J.; Oh S. K. Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. J. Biotechnol. 122: 130–141; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Cowan C. A.; Klimanskaya I.; McMahon J.; Atienza J.; Witmyer J.; Zucker J. P.; Wang S.; Morton C. C.; McMahon A. P.; Powers D.; Melton D. A. Derivation of embryonic stem cell lines from human blastocysts. N. Engl. J. Med. 350(13): 1353–1356; 2004.

    Article  CAS  PubMed  Google Scholar 

  • De Sousa P. A.; Gardner J.; Sneddon S.; Pells S.; Tye B. J.; Dand P.; Collins D. M.; Stewart K.; Shaw L.; Przyborski S.; Cooke M.; McLaughlin K. J.; Kimber S. J.; Lieberman B. A.; Wilmut I.; Brison D. R. Clinically failed eggs as a source of normal human embryo stem cells. Stem Cell Res. 2: 188–199; 2009.

    Article  CAS  Google Scholar 

  • Genbacev O.; Krtolica A.; Zdravkovic T.; Brunette E.; Powell S.; Nath A.; Caceres E.; McMaster M.; McDonagh S.; Li Y.; Mandalam R.; Lebkowski J.; Fisher S. J. Serum-free derivation of human embryonic stem cell lines on human placental fibroblast feeders. Fertil. Steril. 83: 1517–1529; 2005.

    Article  PubMed  Google Scholar 

  • Inzunza J.; Gertow K.; Stromberg M. A.; Matilainen E.; Blennow E.; Skottman H.; Wolbank S.; Ahrlund-Richter L.; Hovatta O. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 23: 544–549; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Klimanskaya I.; Chung Y.; Meisner L.; Johnson J.; West M. D.; Lanza R. Human embryonic stem cells derived without feeder cells. Lancet 365(9471): 1636–1641; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Lin G.; OuYang Q.; Zhou X.; Gu Y.; Yuan D.; Li W.; Liu G.; Liu T.; Lu G. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res. 17(12): 999–1007; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Liu W.; Yin Y.; Long X.; Luo Y.; Jiang Y.; Zhang W.; Du H.; Li S.; Zheng Y.; Li Q.; Chen X.; Liao B.; Xiao G.; Wang W.; Sun X. Derivation and characterization of human embryonic stem cell lines from poor quality embryos. J. Genet. Genomics 36(4): 229–239; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y.; Song Z.; Zhao Y.; Qin H.; Cai J.; Zhang H.; Yu T.; Jiang S.; Wang G.; Ding M.; Deng H. A novel chemical-defined medium with bFGF and N2B27 supplements supports, undifferentiated growth in human embryonic stem cells. Biochem. Biophys. Res. Commun. 346(1): 131–139; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig T. E.; Levenstein M. E.; Jones J. M.; Berggren W. T.; Mitchen E. R.; Frane J. L.; Crandall L. J.; Daigh C. A.; Conard K. R.; Piekarczyk M. S.; Llanas R. A.; Thomson J. A. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 24(2): 185–187; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lysdahl H.; Gabrielsen A.; Minger S. L.; Patel M. J.; Fink T.; Petersen K.; Ebbesen P.; Zachar V. Derivation and characterization of four new human embryonic stem cell lines: the Danish experience. Reprod. Biomed. Online 12(1): 119–126; 2006.

    PubMed  Google Scholar 

  • Oh S. K.; Kim H. S.; Ahn H. J.; Seol H. W.; Kim Y. Y.; Park Y. B.; Yoon C. J.; Kim D. W.; Kim S. H.; Moon S. Y. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells 23(2): 211–219; 2005.

    Article  PubMed  Google Scholar 

  • Park S. P.; Lee Y. J.; Lee K. S.; Ah Shin H.; Cho H. Y.; Chung K. S.; Kim E. Y.; Lim J. H. Establishment of human embryonic stem cell lines from frozen-thawed blastocysts using STO cell feeder layers. Hum. Reprod. 19: 676–684; 2004.

    Article  PubMed  Google Scholar 

  • Pickering S. J.; Minger S. L.; Patel M.; Taylor H.; Black C.; Burns C. J.; Ekonomou A.; Braude P. R. Generation of a human embryonic stem cell line encoding the cystic fibrosis mutation deltaF508, using preimplantation genetic diagnosis. Reprod. Biomed. Online 10(3): 390–397; 2005.

    Article  PubMed  Google Scholar 

  • Richards M.; Fong C. Y.; Chan W. K.; Wong P. C.; Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 20: 933–936; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Richards M.; Tan S.; Fong C. Y.; Biswas A.; Chan W. K.; Bongso A. Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells. Stem Cells 21: 546–556; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Simón C.; Escobedo C.; Valbuena D.; Genbacev O.; Galan A.; Krtolica A.; Asensi A.; Sánchez E.; Esplugues J.; Fisher S.; Pellicer A. First derivation in Spain of human embryonic stem cell lines: use of long-term cryopreserved embryos and animal-free conditions. Fertil. Steril. 83(1): 246–249; 2005.

    Article  PubMed  Google Scholar 

  • Stephenson E. L.; Braude P. R.; Mason C. International community consensus standard for reporting derivation of human embryonic stem cell lines. Regen. Med. 2(4): 349–362; 2007.

    Article  PubMed  Google Scholar 

  • Stojkovic P.; Lako M.; Stewart R.; Przyborski S.; Armstrong L.; Evans J.; Murdoch A.; Strachan T.; Stojkovic M. An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23: 306–314; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J. A.; Itskovitz-Eldor J.; Shapiro S. S.; Waknitz M. A.; Waknitz M. A.; Swiergiel J. J.; Marshall V. S.; Jones J. M. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–1147; 1998.

    Article  Google Scholar 

  • Vallier L.; Mendjan S.; Brown S.; Chng Z.; Teo A.; Smithers L. E.; Trotter M. W.; Cho C. H.; Martinez A.; Rugg-Gunn P.; Brons G.; Pedersen R. A. Activin/nodal signalling maintains pluripotency by controlling nanog expression. Development 136(8): 1339–1349; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Veiga A.; Camarasa M. V.; Aran B.; Raya A.; Izpisua J. C. Selection of embryos for stem cell derivation: can we optimize the process? In: Simon C.; Pellicer A. (eds) Stem cells in human reproduction—basic science and therapeutic potential. Informa Healthcare, London; 2006. 0-415-39777-4, 228 pages.

    Google Scholar 

  • Xu C.; Jiang J.; Sottile V.; McWhir J.; Lebkowski J.; Carpenter M. K. Immortalized fibroblast-like cells derived from human embryonic stem cells support undifferentiated cell growth. Stem Cells 22: 972–980; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Yoo S. J.; Yoon B. S.; Kim J. M.; Song J. M.; Roh S. I.; You S.; Yoon H. S. Efficient culture system for human embryonic stem cells using autologous human embryonic stem cell-derived feeder cells. Exp. Mol. Med. 37: 399–407; 2005.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the NorthWest Regional Development Agency (NWDA); NWESCC is also supported by the Medical Research Council and the Manchester NIHR Biomedical Research Centre. The authors would like to thank Dr. Stuart Liddle, Head of Genetics at TCL, for his help in the interpretation of the genotypes produced for unequivocal identification of the derived lines.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria V. Camarasa or Susan J. Kimber.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camarasa, M.V., Kerr, R.W., Sneddon, S.F. et al. Derivation of Man-1 and Man-2 research grade human embryonic stem cell lines. In Vitro Cell.Dev.Biol.-Animal 46, 386–394 (2010). https://doi.org/10.1007/s11626-010-9291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9291-5

Keywords

Navigation