Skip to main content
Log in

Effects of cooling rates and ice-seeding temperatures on the cryopreservation of whole ovaries

  • Fertility Preservation
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to detect the effects of different cooling rates and different ice-seeding temperatures on the cryopreservation of whole ovaries.

Methods

Cow whole ovaries were slowly frozen using different protocols with different cooling rates and different ice-seeding temperatures. Follicular viability was assessed using the trypan blue test; the percentage of morphologically normal primordial follicles and the follicular densities of grafts were measured.

Results

Protocol IIb was most effective protocol. Protocol Ib was more effective than protocol Ia and protocol Ic, and protocol IIIb was more effective than protocol IIIa and protocol IIIc.

Conclusions

Protocol IIb (the cooling rate was 0.2°C/min, and the ice-seeding temperature was −5°C) was appropriate for slow freezing of cow whole ovaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Apperley JF, Reddy N. Mechanism and management of treatment-related gonadal failure in recipients of high dose chemoradiotherapy. Blood Rev. 1995;9:93–116.

    Article  PubMed  CAS  Google Scholar 

  2. Baker TG. Radiosensitivity of manmmalian oocytes with partiular reference to the human female. Am J Obstet Gynecol. 1971;110:746–61.

    PubMed  CAS  Google Scholar 

  3. Oktay K, Karlikay G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342:1919.

    Article  PubMed  CAS  Google Scholar 

  4. Oktay K, Buyuk E. Fertility preservation in women undergoing cancer treatment. Lancet. 2004;363:1830.

    Article  PubMed  Google Scholar 

  5. Radford JA, Lieberman BA, Brison DR, Smith AR, Critchlow JD, Russell SA, et al. Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet. 2001;357:1172–5.

    Article  PubMed  CAS  Google Scholar 

  6. Tryde Schmidt KL, Yding Andersen C, Starup J, Loft A, Byskov AG, Nyboe Andersen A. Orthotopic autotranplantation of cryopreserved ovarian tissue to a woman cured of cancer-follicular growth, steroid production and oocyte retrieval. Reprod Biomed Online. 2004;8:448–53.

    Article  PubMed  Google Scholar 

  7. Schmidt KL, Andersen CY, Loft A, Byskov AG, Ernst E, Andersen AN. Follow-up of ovarian function post-chemotherapy following ovarian cryopreservation and transplantation. Hum Reprod. 2005;20:3539–46.

    Article  PubMed  CAS  Google Scholar 

  8. Nugent D, Newton H, Gosden RG, Rutherford AJ. Investigation of follicle survival after human heterotopic grafting. Hum Reprod. 1998;13:23–4.

    Google Scholar 

  9. Liu J, Van der Elst J, Van den Broecke R, Dhont M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum Reprod. 2002;17:605–11.

    Article  PubMed  Google Scholar 

  10. Aubard Y, Piver P, Cogni Y, Vermeaux V, Poulin N, Driancourt MA. Orthotopic and heterotopic autografts of frozen-thawed ovarian cortex in sheep. Hum Reprod. 1999;14:2149–54.

    Article  PubMed  CAS  Google Scholar 

  11. Imhof M, Bergmeiter H, Lipovac M, Rudas M, Hofstetter G, Huber J. Orthotopic microvascular reanastomosis of whole cryopreserved ovine ovaries resulting in pregnancy and live birth. Fertil Steril. 2006;85(1 Suppl):1208–15.

    Article  PubMed  Google Scholar 

  12. Courbiere B, Caquant L, Mazoyer C, Franck M, Lornage J, Salle B. Difficulties improving ovarian functional recovery by microvascular transplantation and whole ovary vitrification. Fertil Steril. 2009;91:2697–706.

    Article  PubMed  Google Scholar 

  13. Martinez-Madrid B, Dolmans MM, Van Langendonckt A, Defrere S, Donnez J. Freeze-thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82:1390–4.

    Article  PubMed  Google Scholar 

  14. Trad FS, Toner M, Biggers JD. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes. Hum Reprod. 1998;14:1569–77.

    Article  Google Scholar 

  15. Gook DA, Edgar DH, Stern C. Effect of cooling and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1,2-propanediol. Hum Reprod. 1999;14:2061–8.

    Article  PubMed  CAS  Google Scholar 

  16. Miyamoto H, Ishibashi T. Effects of the temperature of ice-seeding on survival of frozen-and-thawed mouse morulae. Experientia. 1981;37:187–8.

    Article  PubMed  CAS  Google Scholar 

  17. Gerritse R, Beerendonk CCM, Tijink MSL, Heetkamp A, Kremer JAM, Braat DDM, et al. Optimal perfusion of an intact ovary as a prerequisite for successful ovarian cryopreservation. Hum Reprod. 2008;23:329–35.

    Article  PubMed  CAS  Google Scholar 

  18. Nisolle M, Casanas-Roux FQuJ, Motta P, Donnez J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74:122–9.

    Article  PubMed  CAS  Google Scholar 

  19. Chen CH, Chen SG, Wu GJ, Wang J, Yu CP, Liu JY. Autologous heterotopic transplantation of intact rabbit ovary after frozen banking at −196°C. Fertil Steril. 2006;86(4 Suppl):1059–66.

    Article  PubMed  Google Scholar 

  20. Yin H, Wang X, Kim SS, Chen H, Tan SL, Gosden RG. Transplantation of intact rat gonads using vascular anastomosis: effects of cryopreservation, ischemia and genotype. Hum Reprod. 2003;18:1165–72.

    Article  PubMed  Google Scholar 

  21. Wang X, Chen H, Yin H, Kim SS, Lin Tan S, Gosden RG. Fertility after intact ovary transplantation. Nature. 2002;415:385.

    Google Scholar 

  22. Fabbri R, Venturoli SD, Errico A, Iannascoli C, Gabusi E, Valeri B, et al. Ovarian tissue banking and fertility preservation in cancer patients: histological and immunohistochemical evaluation. Gynecol Oncol. 2002;89:259–66.

    Article  Google Scholar 

  23. Neto V, Buff S, Lornage J, Bottolier B, Guérin P, Joly T. Effects of different freezing parameters on the morphology and viability of preantral follicles after cryopreservation of doe rabbit ovarian tissue. Fertil Steril. 2008;89:1348–56.

    Article  PubMed  CAS  Google Scholar 

  24. Sadeu JC, Cortvindt R, Ron-EI R, Kasterstein E, Smitz J. Morphological and ultrastructural evaluation of cultured frozen-thawed human fetal ovarian tissue. Fertil Steril. 2006;85:1130–5.

    Article  PubMed  Google Scholar 

  25. Perdrix A, Macé B, Milazzo JP, Liard-Zmuda A, Baron M, Rives N. Ovarian tissue thawing: a comparison of two conditions. Fertil Steril. 2010;93:307–10.

    Article  PubMed  CAS  Google Scholar 

  26. Wang Y. Reply: human ovarian tissue: vitrification versus conventional freezing. Hum Reprod. 2009;24:1768–9.

    Article  Google Scholar 

  27. Fauque P, Amor AB, Joanne C, Agnani G, Bresson JL, Roux C. Use of trypan blue staining to assess the quality of ovarian cryopreservation. Fertil Steril. 2007;87:1200–7.

    Article  PubMed  Google Scholar 

  28. Courbiere B, Massardier J, Salle B, Mazoyer C, Guerin JF, Lornage J. Follicular viability and histological assessment after cryopreservation of whole sheep ovaries with vascular pedicle by vitrification. Fertil Steril. 2005;84(2 Suppl):1065–71.

    Article  PubMed  Google Scholar 

  29. Courbiere B, Odagescu V, Baudot A, Massardier J, Mazoyer C, Salle B, et al. Cryopreservation of the ovary by vitrification a an alternative to slow-cooling protocols. Fertil Steril. 2006;86(4 Suppl):1243–51.

    Article  PubMed  Google Scholar 

  30. Nakamura T, Takagi H, Shima J. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen saccharomyces cerevisiae cells. Cryobiology. 2009;58:170–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Appreciation is extended to Dr Bin Li, Ph.D., for assistance in statistics analysis and Dr Yu Wang Ph.D. from department of pathology for supporting this work.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Jiang Chen.

Additional information

Supported by: 1. Postdoctoral Foundation for Innovation Project of Shandong Province, China (Grant No: 200903074). 2. National Basic Research Program of China (973 Program) (2007CB947403).

Capsule

Protocol IIb (the cooling rate was 0.2°C/min, and the ice-seeding temperature was −5°C) was appropriate for slow freezing of cow whole ovaries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JM., Sheng, Y., Cao, YZ. et al. Effects of cooling rates and ice-seeding temperatures on the cryopreservation of whole ovaries. J Assist Reprod Genet 28, 627–633 (2011). https://doi.org/10.1007/s10815-011-9557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-011-9557-1

Keywords

Navigation