Skip to main content

Advertisement

Log in

Whole sheep ovary cryopreservation: evaluation of a slow freezing protocol with dimethylsulphoxide

  • FERTILITY PRESERVATION
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate a slow freezing method for whole ovary cryopreservation by evaluating effects of added cryoprotectant.

Methods

Sheep ovaries were isolated during surgery, flushed with either Ringer-Acetate or dimethylsulphoxide and cryopreserved by slow freezing. After rapid thawing, viability was assessed by ovarian in vitro perfusion, cell culture, histology and fluorescent live-dead assay.

Results

Production of cyclic AMP and progesterone was slightly higher in the dimethylsulphoxide group. Cultured ovarian cells from dimethylsulphoxide-preserved ovaries secreted larger amounts of progesterone than cells from Ringer-Acetate preserved. Light microscopy of ovarian biopsies obtained after perfusion, revealed well-preserved tissue in the dimethysulphoxide group but not in the Ringer-Acetate group. The density of small follicles and ovarian cell viability were higher in dimethysulphoxide ovaries compared to Ringer-Acetate ovaries.

Conclusions

Equilibrium with its protective effect can be achieved by slow freezing protocol, with an additional protective effect by the presence of dimethylsulphoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marhhom E, Cohen I. Fertility preservation options for women with malignancies. Obstet Gynecol Surv. 2007;62:58–72.

    Article  PubMed  Google Scholar 

  2. Linabery AM, Ross JA. Childhood and adolescent cancer survival in the US by race and ethnicity for the diagnostic period 1975–1999. Cancer. 2008;113:2575–96.

    Article  PubMed  Google Scholar 

  3. Sonmezer M, Oktay K. Fertility preservation in young women undergoing breast cancer therapy. Oncologist. 2006;11:422–34.

    Article  PubMed  CAS  Google Scholar 

  4. Chiarelli AM, Marrett LD, Darlington G. Early menopause and infertility in females after treatment for childhood cancer diagnosed in 1964–1988 in Ontario, Canada. Am J Epidemiol. 1999;150:245–54.

    PubMed  CAS  Google Scholar 

  5. Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, et al. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update. 2010;16:395–414.

    Article  PubMed  CAS  Google Scholar 

  6. Oktay K, Oktem O. Ovarian cryopreservation and transplantation for fertility preservation for medical indications: report of an ongoing experience. Fertil Steril. 2010;93:762–8.

    Article  PubMed  Google Scholar 

  7. Bedaiwy MA, Hussein MR, Biscotti C, Falcone T. Cryopreservation of intact human ovary with its vascular pedicle. Hum Reprod. 2006;21:3258–69.

    Article  PubMed  Google Scholar 

  8. Candy CJ, Wood MJ, Whittingham DG. Restoration of a normal reproductive lifespan after grafting of cryopreserved mouse ovaries. Hum Reprod. 2000;15:1300–4.

    Article  PubMed  CAS  Google Scholar 

  9. Yin H, Wang X, Kim SS, Chen H, Tan SL, Gosden RG. Transplantation of intact rat gonads using vascular anastomosis: effects of cryopreservation, ischaemia and genotype. Hum Reprod. 2003;18:1165–72.

    Article  PubMed  Google Scholar 

  10. Chen CH, Chen SG, Wu GJ, Wang J, Yu CP, Liu JY. Autologous heterotopic transplantation of intact rabbit ovary after frozen banking at −196 degrees C. Fertil Steril. 2006;86:1059–66.

    Article  PubMed  Google Scholar 

  11. Gerritse R, Beerendonk CC, Tijink MS, Heetkamp A, Kremer JA, Braat DD, et al. Optimal perfusion of an intact ovary as a prerequisite for successful ovarian cryopreservation. Hum Reprod. 2008;23:329–35.

    Article  PubMed  CAS  Google Scholar 

  12. Imhof M, Hofstetter G, Bergmeister H, Rudas M, Kain R, Lipovac M, et al. Cryopreservation of a whole ovary as a strategy for restoring ovarian function. J Assist Reprod Genet. 2004;21:459–65.

    Article  PubMed  CAS  Google Scholar 

  13. Scott JR, Keye WR, Poulson AM, Reynolds WA. Microsurgical ovarian transplantation in the primate. Fertil Steril. 1981;36:512–5.

    PubMed  CAS  Google Scholar 

  14. Bedaiwy MA, Jeremias E, Gurunluoglu R, Hussein MR, Siemianow M, Biscotti C, et al. Restoration of ovarian function after autotransplantation of intact frozen-thawed sheep ovaries with microvascular anastomosis. Fertil Steril. 2003;79:594–602.

    Article  PubMed  Google Scholar 

  15. Arav A, Revel A, Nathan Y, Bor A, Gacitua H, Yavin S, et al. Oocyte recovery, embryo development and ovarian function after cryopreservation and transplantation of whole sheep ovary. Hum Reprod. 2005;20:3554–9.

    Article  PubMed  CAS  Google Scholar 

  16. Imhof M, Bergmeister H, Lipovac M, Rudas M, Hofstetter G, Huber J. Orthotopic microvascular reanastomosis of whole cryopreserved ovine ovaries resulting in pregnancy and live birth. Fertil Steril. 2006;85 Suppl 1:1208–15.

    Article  PubMed  Google Scholar 

  17. Bedaiwy MA, Falcone T. Harvesting and autotransplantation of vascularized ovarian grafts: approaches and techniques. Reprod Biomed Online. 2007;14:360–71.

    Article  PubMed  Google Scholar 

  18. Fahy GM, Wowk B, Wu J. Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenation Res. 2006;9:279–91.

    Article  PubMed  CAS  Google Scholar 

  19. Shaw JM, Jones GM. Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos. Hum Reprod Update. 2003;9:583–605.

    Article  PubMed  CAS  Google Scholar 

  20. Shaw JM, Oranratnachai A, Trounson AO. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology. 2000;53:59–72.

    Article  PubMed  CAS  Google Scholar 

  21. Karlsson JO, Toner M. Long-term storage of tissues by cryopreservation: critical issues. Biomaterials. 1996;17:243–56.

    Article  PubMed  CAS  Google Scholar 

  22. McGann LE. Differing actions of penetrating and nonpenetrating cryoprotective agents. Cryobiology. 1978;15:382–90.

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Madrid B, Dolmans MM, Van Langendonckt A, Defrere S, Donnez J. Freeze-thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril. 2004;82:1390–4.

    Article  PubMed  Google Scholar 

  24. Wallin A, Ghahremani M, Dahm-Kahler P, Brannstrom M. Viability and function of the cryopreserved whole ovary: in vitro studies in the sheep. Hum Reprod. 2009;24:1684–94.

    Article  PubMed  Google Scholar 

  25. Wusteman MC, Pegg DE, Robinson MP, Wang LH, Fitch P. Vitrification media: toxicity, permeability, and dielectric properties. Cryobiology. 2002;44:24–37.

    Article  PubMed  CAS  Google Scholar 

  26. Dahm-Kahler P, Wranning C, Lundmark C, Enskog A, Molne J, Marcickiewicz J, et al. Transplantation of the uterus in sheep: methodology and early reperfusion events. J Obstet Gynaecol Res. 2008;34:784–93.

    Article  PubMed  Google Scholar 

  27. Bjersing L, Cajander S, Damber JE, Janson PO, Kallfelt B. The isolated perfused rabbit ovary-a model for studies of ovarian function. Ultrastructure after perfusion with different media. Cell Tissue Res. 1981;216:471–9.

    Article  PubMed  CAS  Google Scholar 

  28. Holmes PV, Hedin L, Janson PO. The role of cyclic adenosine 3′, 5′-monophosphate in the ovulatory process of the in vitro perfused rabbit ovary. Endocrinology. 1986;118:2195–202.

    Article  PubMed  CAS  Google Scholar 

  29. Runesson E, Ivarsson K, Janson PO, Brannstrom M. Gonadotropin- and cytokine-regulated expression of the chemokine interleukin 8 in the human preovulatory follicle of the menstrual cycle. J Clin Endocrinol Metab. 2000;85:4387–95.

    Article  PubMed  CAS  Google Scholar 

  30. Dolmans MM, Michaux N, Camboni A, Martinez-Madrid B, Van Langendonckt A, Nottola SA, et al. Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum Reprod. 2006;21:413–20.

    Article  PubMed  CAS  Google Scholar 

  31. Noyes N, Boldt J, Nagy ZP. Oocyte cryopreservation: is it time to remove its experimental label? J Assist Reprod Genet. 2010;27:69–74.

    Article  PubMed  Google Scholar 

  32. Varghese AC, Nagy ZP, Agarwal A. Current trends, biological foundations and future prospects of oocyte and embryo cryopreservation. Reprod Biomed Online. 2009;19:126–40.

    Article  PubMed  Google Scholar 

  33. Youssry M, Ozmen B, Zohni K, Diedrich K, Al-Hasani S. Current aspects of blastocyst cryopreservation. Reprod Biomed Online. 2008;16:311–20.

    Article  PubMed  CAS  Google Scholar 

  34. Munn CS, Kiser LC, Wetzner SM, Baer JE. Ovary volume in young and premenopausal adults: US determination. Work in progress. Radiology. 1986;159:731–2.

    PubMed  CAS  Google Scholar 

  35. Newton H, Fisher J, Arnold JR, Pegg DE, Faddy MJ, Gosden RG. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod. 1998;13:376–80.

    Article  PubMed  CAS  Google Scholar 

  36. Hovatta O, Silye R, Krausz T, Abir R, Margara R, Trew G, et al. Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants. Hum Reprod. 1996;11:1268–72.

    PubMed  CAS  Google Scholar 

  37. Demirci B, Lornage J, Salle B, Frappart L, Franck M, Guerin JF. Follicular viability and morphology of sheep ovaries after exposure to cryoprotectant and cryopreservation with different freezing protocols. Fertil Steril. 2001;75:754–62.

    Article  PubMed  CAS  Google Scholar 

  38. Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364:1405–10.

    Article  PubMed  CAS  Google Scholar 

  39. Andersen CY, Rosendahl M, Byskov AG, Loft A, Ottosen C, Dueholm M, et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23:2266–72.

    Article  PubMed  Google Scholar 

  40. Gandolfi F, Paffoni A, Papasso Brambilla E, Bonetti S, Brevini TA, Ragni G. Efficiency of equilibrium cooling and vitrification procedures for the cryopreservation of ovarian tissue: comparative analysis between human and animal models. Fertil Steril. 2006;85 Suppl 1:1150–6.

    Article  PubMed  Google Scholar 

  41. Brannstrom M, Flaherty S. Methodology and characterization of an in vitro perfusion model for the mouse ovary. J Reprod Fertil. 1995;105:177–83.

    Article  PubMed  CAS  Google Scholar 

  42. Abrahamsson G, Janson PO, Kullander S. An in vitro perfusion method for metabolic studies on human postmenopausal ovaries. Acta Obstet Gynecol Scand. 1990;69:527–32.

    Article  PubMed  CAS  Google Scholar 

  43. Toner M, Cravalho EG, Stachecki J, Fitzgerald T, Tompkins RG, Yarmush ML, et al. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential. Biophys J. 1993;64:1908–21.

    Article  PubMed  CAS  Google Scholar 

  44. Steponkus PL, Dowgert MF, Gordon-Kamm WJ. Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology. 1983;20:448–65.

    Article  PubMed  CAS  Google Scholar 

  45. Nahum R, Thong KJ, Hillier SG. Metabolic regulation of androgen production by human thecal cells in vitro. Hum Reprod. 1995;10:75–81.

    Article  PubMed  CAS  Google Scholar 

  46. Wadia PR, Mahale SD, Nandedkar TD. Effect of the human follicle-stimulating hormone-binding inhibitor and its N-terminal fragment on follicle-stimulating hormone-induced progesterone secretion by granulosa cells in vitro. J Biosci. 2007;32:1185–94.

    Article  PubMed  CAS  Google Scholar 

  47. Isachenko V, Isachenko E, Reinsberg J, Montag M, van der Ven K, Dorn C, et al. Cryopreservation of human ovarian tissue: comparison of rapid and conventional freezing. Cryobiology. 2007;55:261–8.

    Article  PubMed  CAS  Google Scholar 

  48. Fauque P, Ben Amor A, Joanne C, Agnani G, Bresson JL, Roux C. Use of trypan blue staining to assess the quality of ovarian cryopreservation. Fertil Steril. 2007;87:1200–7.

    Article  PubMed  Google Scholar 

  49. Onions VJ, Mitchell MR, Campbell BK, Webb R. Ovarian tissue viability following whole ovine ovary cryopreservation: assessing the effects of sphingosine-1-phosphate inclusion. Hum Reprod. 2008;23:606–18.

    Article  PubMed  CAS  Google Scholar 

  50. Acker JP, McGann LE. Innocuous intracellular ice improves survival of frozen cells. Cell Transplant. 2002;11:563–71.

    PubMed  Google Scholar 

  51. Almici C, Ferremi P, Lanfranchi A, Ferrari E, Verardi R, Marini M, et al. Uncontrolled-rate freezing of peripheral blood progenitor cells allows successful engraftment by sparing primitive and committed hematopoietic progenitors. Haematologica. 2003;88:1390–5.

    PubMed  Google Scholar 

Download references

Acknowledgments

Financial support: Supported by grants from: Swedish Research Council, Stockholm, Sweden; Sahlgrenska Academy ALF, Göteborg, Sweden; Hjalmar Svensson’s Research Foundation, Göteborg, Sweden; and Assar Gabrielsson’s Research Foundation, Göteborg, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Milenkovic.

Additional information

Capsule The study evaluates the impact of dimethylsulphoxide as a cryoprotectant for whole ovary cryopreservation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milenkovic, M., Wallin, A., Ghahremani, M. et al. Whole sheep ovary cryopreservation: evaluation of a slow freezing protocol with dimethylsulphoxide. J Assist Reprod Genet 28, 7–14 (2011). https://doi.org/10.1007/s10815-010-9477-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-010-9477-5

Keywords

Navigation