Skip to main content
Log in

Redox State of Photosynthetic Ferredoxin Under Heat and Light Stress

  • Published:
Journal of Applied Spectroscopy Aims and scope

The kinetics of oxidation/reduction of the primary donor of photosystem 1 (PS1) P700, plastocyanin (PC), and ferredoxin (Fd) in the first leaves of barley seedlings under exposure to high-intensity light (2000 μmol∙quanta∙m–2·s–1, 30 min) and elevated temperature (40°C, 3 h) were studied using differential absorption photometry. Exposure to high-intensity light increased the accumulation of the oxidized form of PS1 reaction center P700+, oxidized PC, and reduced Fd. Reduced Fd was not reoxidized under the same conditions on exposure to red and far-red light. The accumulation of P700+, PC+, and Fd increased in barley seedlings exposed to elevated temperatures. Also, reoxidation of leaf Fd accelerated under red light. Oxidized Fd did not accumulate under far-red light. It was concluded that photo-independent electron flow through Fd under light stress and alternative electron flows involving the plastoquinone pool under heat stress were activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mathur, D. Agrawal, and A. Jajoo, J. Photochem. Photobiol., B, 137, 116–126 (2014).

  2. W. Yamori, K. Hikosaka, and D. A. Way, Photosynth. Res., 119, 101–117 (2014).

    Article  Google Scholar 

  3. C. M. Anderson, E. M. Mattoon, and N. Zhang, Commun. Biol., 4, Article ID 1092 (2021).

  4. E. Maai, K. Nishimura, R. Takisawa, and T. Nakazaki, Plant Prod. Sci., 23, 172–181 (2020).

    Article  Google Scholar 

  5. S. Takahashi, H. Bauwe, and M. Badger, Plant Physiol., 144, 487–494 (2007).

    Article  Google Scholar 

  6. K.-J. Dietz, J. Exp. Bot., 66, 2401–2414 (2015).

    Article  Google Scholar 

  7. S. Takahashi and M. R. Badger, Trends Plant Sci., 16, 53–60 (2011).

    Article  Google Scholar 

  8. H. Kirchhoff, Philos. Trans. R. Soc., B, 369, Article ID 2013.0225 (2014).

  9. S. E. Flannery, C. Hepworth, W. H. J. Wood, F. Pastorelli, C. N. Hunter, M. J. Dickman, P. J. Jackson, and M. P. Johnson, Plant J., 105, 223–244 (2020).

    Article  Google Scholar 

  10. E. Maai, K. Nishimura, R. Takisawa, and T. Nakazaki, Plant Prod. Sci., 23, 172–181 (2020).

    Article  Google Scholar 

  11. P. Muller, X.-P. Li, and K. K. Niyogi, Plant Physiol., 125, 1558–1566 (2001).

    Article  Google Scholar 

  12. J.-D. Rochaix, Annu. Rev. Plant Biol., 65, 287–309 (2014).

    Article  Google Scholar 

  13. Y. Sun, C. Frankenberg, J. D. Wood, D. S. Schimel, M. Jung, L. Guanter, D. T. Drewry, M. Verma, A. Porcar-Castell, T. J. Griffis, L. Gu, T. S. Magney, P. Kohler, B. Evans, and K. Yuen, Science, 358, No. 6360, Article ID 5747 (2017).

  14. S. J. Crafts-Brandner and M. E. Salvucci, Plant Physiol., 129, 1773–1780 (2002).

    Article  Google Scholar 

  15. S. Z. Toth, J. T. Puthur, V. Nagy, and G. Garab, Plant Physiol., 149, No. 3, 1568–1578 (2009).

    Article  Google Scholar 

  16. N. Pshybytko, J. Kruk, L. Kabashnikova, and K. Strzalka, Biochim. Biophys. Acta, 1777, 1393–1399 (2008).

    Article  Google Scholar 

  17. E. Medina, S.-H. Kim, M. Yun, and W.-G. Choi, Plants, 10, Article ID 371 (2021).

  18. Q. Li, Z. J. Yao, and H. Mi, Front. Plant Sci., 7, Article ID 285 (2016).

  19. Y. Jiang, X. Feng, H. Wang, Y. Chen, and Y. Sun, J. Plant Res., 134, 1311–1321 (2021).

    Article  Google Scholar 

  20. N. L. Pshybytko, J. Appl. Spectrosc., 90, No. 1, 60–65 (2023).

    Article  ADS  Google Scholar 

  21. N. Pshybytko, J. Kruk, E. Lysenko, K. Strzalka, and V. Demidchik, Environ. Exp. Bot., 206, Article ID 105151 (2023).

  22. T. Goss and G. Hanke, Curr. Protein Pept. Sci., 15, No. 4, 385–393 (2014).

    Article  Google Scholar 

  23. F. J. Cejudo, M.-C. Gonzalez, and J. M. Perez-Ruiz, Plant Physiol., 86, No. 1, 9–21 (2021).

    Article  Google Scholar 

  24. G. Kurisu and T. Tsukihara, J. Biochem., 171, No. 1, 19–21 (2022).

    Article  Google Scholar 

  25. I. Bertini, C. Luchinat, A. Provenzani, A. Rosato, and P. R. Vasos, Proteins: Struct. Funct., Bioinf., 4, No. 6, 110–127 (2002).

  26. Y. Onda, T. Matsumura, Y. Kimata-Ariga, H. Sakakibara, T. Sugiyama, and T. Hase, Plant Physiol., 123, 1037–1046 (2000).

    Article  Google Scholar 

  27. G. T. Hanke, Y. Kimata-Ariga, I. Taniguchi, and T. Hase, Plant Physiol., 134, No. 1, 255–264 (2004).

    Article  Google Scholar 

  28. X. Guan, S. Chen, C. P. Voon, K.-B. Wong, M. Tikkanen, and B. L. Lim, Front. Plant Sci., 9, Article ID 410 (2018).

  29. G. Hanke and P. Mulo, Plant, Cell Environ., 36, 1071–1084 (2013).

    Article  Google Scholar 

  30. K. Yoshida, Y. Yokochi, K. Tanaka, and T. Hisabori, J. Biol. Chem., 298, No. 12, Article ID 102650 (2022).

  31. M. Lindahl and T. Kieselbach, J. Proteomics, 72, No. 3, 416–438 (2009).

    Article  Google Scholar 

  32. P. Geigenberger, I. Thormahlen, D. M. Daloso, and A. R. Fernie, Trends Plant Sci., 22, No. 3, 249–262 (2017).

    Article  Google Scholar 

  33. L. Nikkanen and E. Rintamaki, Biochem. J., 476, 1159–1172 (2019).

    Article  Google Scholar 

  34. M. Zaffagnini, S. Fermani, C. H. Marchand, A. Costa, F. Sparla, N. Rouhier, P. Geigenberger, S. D. Lemaire, and P. Trost, Antioxid. Redox Signaling, 31, No. 3, 155–210 (2019).

    Article  Google Scholar 

  35. U. Schreiber and C. Klughammer, Plant Cell Physiol., 57, No. 7, 1454–1467 (2016).

    Google Scholar 

  36. C. Klughammer and U. Schreiber, Photosynth. Res., 128, No. 2, 195–214 (2016).

    Article  Google Scholar 

  37. P. F. Rokitskii, Biological Statistics [in Russian], Vyshéishaya Shkola, Minsk (1973).

  38. C. Gisriel, G. Shen, V. Kurashov, M. Y. Ho, S. Zhang, D. Williams, J. H. Golbeck, P. Fromme, and D. A. Bryant, Sci. Adv., 6, No. 6, Article ID 6415 (2020).

  39. J. Minagawa, Biochim. Biophys. Acta, Bioenerg., 1807, No. 8, 897–905 (2011).

  40. K. Yoshida and T. Hisabori, Antioxidants, 7, Article ID 153 (2018).

  41. T. Ogawa, K. Kobayashi, Y. Y. Taniguchi, T. Shikanai, N. Nakamura, A. Yokota, and Y. N. Munekage, Plant Physiol., 191, No. 4, 2288–2300 (2023).

    Article  Google Scholar 

  42. M. Ma, Y. Liu, C. Bai, Y. Yang, Z. Sun, X. Liu, S. Zhang, X. Han, and J. W. H. Yong, Front. Plant Sci., 12, Article ID 702196 (2021).

  43. T. G. Laughlin, A. N. Bayne, and J. F. Trempe, Nature, 566, 411–414 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Pshybytko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 91, No. 2, pp. 264–272, March–April, 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshybytko, N.L. Redox State of Photosynthetic Ferredoxin Under Heat and Light Stress. J Appl Spectrosc 91, 342–348 (2024). https://doi.org/10.1007/s10812-024-01726-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-024-01726-8

Keywords

Navigation