Skip to main content
Log in

Terahertz Spectroscopy and Molecular Modeling of Barbituric Acid

  • Published:
Journal of Applied Spectroscopy Aims and scope

The well-resolved terahertz (THz) absorption spectrum of barbituric acid has been investigated using terahertz time-domain spectroscopy. Four distinct THz spectral features and two shoulder peaks were observed in the range of 10–124 cm–1. A complete analysis was performed with density functional theory, which provided an excellent agreement between solid-state simulation and experiment. The solid-state analysis indicates that the six experimental spectral features observed at low temperature consist of nine infrared-active vibrational modes. Further simulations based on hydrogen-bond isotopologues were performed to study the involvement of hydrogen bonds in the collective modes. A feature at 118.0 cm–1 mainly stems from the collective vibration of dimer hydrogen bonds (m) while features at 102.0 and 109.6 cm–1 primarily come from the collective vibrations of linear hydrogen bonds (n). The results may be useful for monitoring molecular reaction in industrial production according to the state of hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Dragoman and M. Dragoman, Prog. Quantum Electron., 28, 1–66 (2004).

    Article  ADS  Google Scholar 

  2. M. Mizuno and A. Y. Kaori, J. Biol. Phys., 41, 293–301 (2015).

    Article  Google Scholar 

  3. Z. X. Li, J. Zhou, X. S. Guo, B. B. Ji, W. Zhou, and D. H. Li, J. Appl. Spectrosc., 85, No. 1, 840–844 (2018).

    Article  ADS  Google Scholar 

  4. X. Wu, Y. X. Xu, and L. Wang, Appl. Phys. Lett., 101, 033704 (2012).

    Article  ADS  Google Scholar 

  5. M. D. King, W. Ouellette, and T. M. Korter, J. Phys. Chem., 115, 9467–9478 (2011).

    Article  Google Scholar 

  6. L. Liu, L. Shen, F. Yang, F. Han, P. Hu, and M. Song, J. Appl. Spectrosc., 83, 603–609 (2016).

    Article  ADS  Google Scholar 

  7. M. D. King and W. D. Buchanan, J. Pharm. Sci., 83, 3786–3792 (2011).

    Google Scholar 

  8. C. T. Konek, B. P. Mason, J. P. Hooper, C. A. Stoltz, and J. Wilkinson, Chem. Phys. Lett., 489, 48–53 (2010).

    Article  ADS  Google Scholar 

  9. P. M. Hakey, D. G. Allis, M. R. Hudson, W. Ouellette, and T. M. Korter, Chem. Phys. Chem., 10, 2434–2444 (2009).

    Article  Google Scholar 

  10. M. Takahashi, N. Okamura, X. Fan, H. Shirakawa, and H. Minamide, J. Phys. Chem. A, 121, 2558–2564 (2017).

    Article  Google Scholar 

  11. C. Oppenheim, T. M. Korter, J. S. Melinger, and D. R. Grischkowsky, J. Phys. Chem. A, 114, 12513–12521 (2010).

    Article  Google Scholar 

  12. J. Dong, Z. Zhang, H. Zheng, and M. Sun, Nanophotonics, 4, 472–490 (2015).

    Article  Google Scholar 

  13. B. Lei, J. Wang, J. Li, J. Tang, Y. Wang, W. Zhao, and Y. Duan, Opt. Express, 27, 20541–20557 (2019).

    Article  ADS  Google Scholar 

  14. A. J. Barnes, L. L. Gall, and J. Lauransan, J. Mol. Struct., 56, 29–39 (1979).

    Article  ADS  Google Scholar 

  15. S. Sebastian, H. T. Varghese, Y. S. Mary, and C. Y. Panicker, Orient. J. Chem., 26, 1139–1142 (2010).

    Google Scholar 

  16. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 220, 567–570 (2005).

    Google Scholar 

  17. L. Kleinman and D. M. Bylander, Phys. Rev. Lett., 48, 1425 (1982).

    Article  ADS  Google Scholar 

  18. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fionlhais, Phys. Rev. B, 46, 6671–6687 (1992).

    Article  ADS  Google Scholar 

  19. T. C. Lewis, D. A. Tocher, and S. L. Price, Cryst. Growth Des., 4, 979–987 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. Zheng.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 87, No. 6, pp. 867–872, November–December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Li, C., Dong, J. et al. Terahertz Spectroscopy and Molecular Modeling of Barbituric Acid. J Appl Spectrosc 87, 1000–1005 (2021). https://doi.org/10.1007/s10812-021-01100-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01100-y

Keywords

Navigation