Skip to main content
Log in

Terahertz High Resolution Gas Spectroscopy for the Analysis of the Composition of Products of Thermal Decomposition of Cereal Grains (Oat, Barley)

  • Published:
Journal of Applied Spectroscopy Aims and scope

The basic principles of high-resolution terahertz spectroscopy based on the effect of free damping polarization and a spectrometer in which this effect is realized in the mode of phase shift keying of radiation acting on a gas are considered. The presented approach is characterized by high selectivity and sensitivity, short measurement time, and safety. The possibility of using high-resolution terahertz spectroscopy in agricultural applications, such as component analysis of grain composition during its thermal decomposition based on the analysis of grain odor composition, is considered. Measurements of the subterahertz spectra of samples of oats and barley at their thermal decomposition were carried out, and the absorption lines of various organic substances were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Drincha and B. Tsydendorzhiev, Kombikorma, No. 7, 59–60 (2010).

  2. A. V. Ovsyankina, Teor. Prakt. Bor′by s Parasitnymi Boleznyami, No. 14, 281–284 (2013).

  3. A. A. Rodnikova and S. L. Beletsky, Khleboprodukty, No. 12, 46–47 (2016).

  4. G. V. Grushko and S. N. Linchenko, Fundamental′nye Issledovaniya, No. 8, 54–56 (2005).

  5. M. Tamura, N. Mochizuki, Y. Nagatomi, K. Harayama, A. Toriba, and K. Hayakawa, Toxins, 7, 1664–1682 (2015).

    Article  Google Scholar 

  6. A.-Ch. J. Cramer, D. S. Mattinson, J. K. Fellman, and B.-K. Baik, J. Agric. Food Chem., 53, 7526–7531 (2005).

    Article  Google Scholar 

  7. M. Busko, H. Jelen, T. Goral, J. Chmielewskid, K. Stuper, L. Szwajkowska-Michaleka, B. Tyrakowska, and J. Perkowski, Food Additiv. Contamin., 27, No. 11, 1574–1580 (2010).

    Article  Google Scholar 

  8. A. N. Rogova, K. B. Gur′eva, E. V. Ivanova, and M. V. Arkhipov, Coll. Works of the First Int. Sci.-Pract. Conf. "Commodity Research, Examination and Technology of Food Products," Moscow, MGUPP (2008), p. 306.

  9. L. I. Lytkina, E. S. Shentsova, A. A. Shevtsov, O. A. Apalikhina, and A. G. Tkachev, Khleboprodukty, No. 2, 56–57 (2017).

  10. R. V. Greene, Sh. H. Gordon, M. A. Jackson, G. A. Bennett, J. F. McClelland, and R. W. Jones, J. Agric. Food Chem., 40, No. 7, 1144–1149 (1992).

    Article  Google Scholar 

  11. D. T. Wicklow and T. C. Pearson, 9th Int. Work. Conf. Stored Product Protection. Microorganisms, Mycotoxins, and Other Biological Contaminants, October 15–18, 2006, Campinas, São Paulo, Brazil (2006), pp. 109–119.

  12. I. T. Bikchantaev, Sh. K. Shakirov, E. M. Yagund, and R. G. Yakhin, Khim. Rastit. Syrya, 1, 135–141 (2016).

  13. Ch. Radenovich, G. V. Maksimov, E. V. Tyutyaev, V. V. Shutova, N. Delich, Z. Chamdzhiya, Yo. Pavlov, and Zh. Jovanovic, Sel′khoz. Biol., 51, No. 5, 645–653 (2016).

  14. V. L. Vaks, E. G. Domracheva, and M. B. Chernyaeva, Zh. Radioelectroniki, No. 11, 1–11 (2017).

  15. V. L. Vaks, A. B. Brailovsky, and V. V. Khodos, Infrared Millimeter Waves, 20, No. 5, 883–896 (1999).

    Article  Google Scholar 

  16. https://reestr.gossort.com/reestr/sort/9705751.

  17. Ya. G. Leibovich, N. M. Vlasenko, and A. S. Kolupaeva, Izv. Samarskogo Nauchnogo Tsentra RAN, 20, No. 2 (2), 245–247 (2018).

  18. H. M. Pickett. E. A. Cohen, B. J. Drouin, and J. C. Pearson, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," JPL Molecular Spectroscopy California Institute of Technology (2003); http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html.

  19. C. P. Endres, S. Schlemmer, P. Schilke, J. Stutzki, and H. S. P. Müller, J. Mol. Spectrosc., 327, 95–104 (2016).

    Article  ADS  Google Scholar 

  20. V. A. Anfertev, V. L. Vaks, M. B. Chernyaeva, E. G. Domracheva, A. A. Gavrilova, and E. V. Dabakhova, EPJ Web Conf. TERA-2018, 195, 10001(1–2) (2018).

    Article  Google Scholar 

  21. R. Bassilakis, R. M. Carangelo, and M. A. Wojtowicz, Fuel, 80, 1765–1786 (2001).

    Article  Google Scholar 

  22. V. V. Plemenkov, Introduction to the Chemistry of Natural Compounds [in Russian], KSU, Kazan (2001).

  23. D. P. Cole, High Resolution Mass Spectrometry for Molecular Characterization of Pyrolysis Products and Kinetics, Graduate Theses and Dissertations (2015) 14342; http://lib.dr.iastate.edu/etd/14342.

  24. I. P. Deineco, Izv. Vyssh. Uchebn. Zaved., Lesnoi Zh., No. 4, 97–112 (2004).

  25. A. A. Yablokov, V. A. Anfertev, L. S. Revin, V. Y. Balakirev, M. B. Chernyaeva, E. G. Domracheva, A. V. Illyuk, S. I. Pripolzin, and V. L. Vaks, IEEE Transact. Terahertz Sci. Technol., 5, No. 5, 845–851 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Chernyaeva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, pp. 778–784, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaks, V.L., Domracheva, E.G., Pripolzin, S.I. et al. Terahertz High Resolution Gas Spectroscopy for the Analysis of the Composition of Products of Thermal Decomposition of Cereal Grains (Oat, Barley). J Appl Spectrosc 86, 861–866 (2019). https://doi.org/10.1007/s10812-019-00907-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00907-0

Keywords

Navigation