Skip to main content

Advertisement

Log in

Methods and approaches of high resolution spectroscopy for analytical applications

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Application of high resolution spectroscopy methods for analyzing vapors and decomposition products of high energy substances is considered. The approaches currently used for detecting such substances are analyzed. Terahertz sources and receivers promising for constructing high resolution spectrometers are identified. A new approach to developing a terahertz spectroscopy technique using phase-diffusion noise radiation sources is proposed. The results of using the high resolution spectroscopy method for analyzing high energy substances vapors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beigang, R., et al.: Comparison of terahertz technologies for detection and identification of explosives. In: Proceedings of SPIE—The International Society for Optical Ingineering, 91020C (2014)

  • Belkin, M., et al.: Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation. Appl. Phys. Lett. 92, 201101 (2008)

    Article  ADS  Google Scholar 

  • Brailovsky, A.B., et al.: Millimeter range spectrometer with phase switching—novel method for reaching of the top sensitivity. Infrared Millim. Waves 20(5), 883–896 (1999)

    Article  Google Scholar 

  • Chen, J., et al.: Absorptiom coefficients of selected explosives and related compounds in the range of 0.1–2.8 THz. Opt. Express 15, 12060–12067 (2007)

    Article  ADS  Google Scholar 

  • De Lucia, F.C., et al.: Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination. Spectrohim Acta Part B At. Spectrosc. 62, 1399–1404 (2007)

    Article  ADS  Google Scholar 

  • Dikmelik, Y., et al.: Femtosecond and nanosecond laser-induced breakdown spectroscopy of trinitrotoluene. Opt. Express 16, 5332–5337 (2008)

    Article  ADS  Google Scholar 

  • Dionne, B.C., et al.: Vapor pressure of explosives. J. Energetic Mater. 4(1), 447–472 (1986)

    Article  Google Scholar 

  • Elbasuney, S., et al.: Complete spectroscopic picture of concealed explosives: laser induced Raman versus infrared. Trends Anal. Chem. 85, 34–41 (2016)

    Article  Google Scholar 

  • Giubileo, G., et al.: Photoacoustic spectroscopy of standard explosives in the MIR region. Nucl. Methods Instrum. Phys. Res. A 623, 771–777 (2010)

    Article  ADS  Google Scholar 

  • Gordy, W., Cook, R.L.: Techniques of Chemistry. Vol.XVIII. Microwave Molecular Spectra. Wiley, NewYork (1984)

    Google Scholar 

  • Gruznov, V.M., et al.: Portable express gas-analytic devices for determination of trace quantities of substances. Russ. Chem. J. (J. Russ. Mendeleev Chem. Soc.) 46(4), 100–108 (2002). (in Russian)

    Google Scholar 

  • Hayton, D.J., et al.: Phase locking of a 3.4 THz third-order distributed feedback quantum cascade laser using a room-temperature superlattice harmonic mixer. Appl. Phys. Lett. 103, 051115 (2013)

    Article  ADS  Google Scholar 

  • Hindle, F., et al.: Recent developments of an opto-electronic THz spectrometer for high-resolution spectroscopy. Sensors 9, 9039–9057 (2009)

    Article  Google Scholar 

  • Kendziora, C.A., et al.: Broadband infrared imagimg spectroscopy for standoff detection of trace explosives. Micro- and Nanotechnologies Sensors, Systems and Applications VIII. Proc. SPIE 9836, 98362G (2016)

    Article  Google Scholar 

  • Kenna, B.T., et al.: Explosive Vapor Emission. In: Khan, S.M (ed.) Proc. 1-st Intern. Symp. Explos. Detect. Technol, pp. 510–517. FAA Atlantic City, NJ (1991)

  • Khodos, V.V., et al.: Fast passage microwave molecular spectroscopy with frequency sweeping. Eur. Phys. J. Appl. Phys. 25, 203–208 (2004)

    Article  ADS  Google Scholar 

  • Koshelets, V.P., et al.: Superconducting integrated terahertz receivers. J. Phys: Conf. Ser. 486, 012026 (2014)

    Google Scholar 

  • Kozola, J., et al.: Characterizing the gas phase ion chemistry of an ion trap mobility spectrometry based explosive trace detector using a tandem mass spectrometer. Talanta 99, 799–810 (2012)

    Article  Google Scholar 

  • Leahy-Hoppa, M., et al.: Terahertz spectroscopy techniques for explosives detection. Anal. Bioanal. Chem. 395(2), 247–257 (2009)

    Article  Google Scholar 

  • Lopez-Lopez, M., et al.: Infrared and Raman spectroscopy of explosives. Trends Anal. Chem. 54, 36–44 (2014)

    Article  Google Scholar 

  • Mullen, C., et al.: Detection of explosives and explosives-related compounds by single photon laser ionization time-of-flight mass spectrometry. Anal. Chem. 78, 3807–3814 (2006)

    Article  Google Scholar 

  • Neese, C.F., et al.: Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity. Sens. J. IEEE 12, 2565–2574 (2012)

    Article  Google Scholar 

  • Pickett, H.M, et al.: Submillimeter, Millimeter, and Microwave Spectral Line Catalog. JPL Molecular Spectroscopy. California Institute of Technology. http://spec.jpl.nasa.gov/ftp/pub/catalog/catform.html (2003)

  • Ramos, C., et al.: Detection of vapours of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy. Appl. Opt. 46, 620–627 (2007)

    Article  ADS  Google Scholar 

  • Revin, L.S., et al.: Interaction of phase-diffusion field with a molecular gas. In: The European Physical Journal Conferences (XXV-th Congress on Spectroscopy, Troitsk, Moscow, Russia, October 3–7, 2016) 132:03042 (2017)

  • Snels, M., et al.: Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy. Chem. Phys. Lett. 489, 134–140 (2010)

    Article  ADS  Google Scholar 

  • Sobakinskaya, E., et al.: High-resolution terahertz spectroscopy with a noise radiation source based on high-T superconductors. J. Phys. D Appl. Phys. 50, 035305 (2017)

    Article  ADS  Google Scholar 

  • Tretyakov, I., et al.: Low noise and wide bandwidth of NbN hot-electron bolometer mixers. Appl. Phys. Lett. 98, 033507 (2011)

    Article  ADS  Google Scholar 

  • Vaks, V.L., et al.: Application of high-resolution IR and microwave spectroscopies for investigation of the impurity composition of silicon tetrafluoride. Opt. Spectrosc. 100(4), 581–583 (2006)

    Article  ADS  Google Scholar 

  • Vaks, V.L., et al.: Application of microwave nonstationary spectroscopy for noninvasive medical diagnostics. Radiophys. Quantum Electron. 51(6), 493–498 (2008)

    Article  ADS  Google Scholar 

  • Vaks, V., et al.: High precise terahertz spectroscopy for noninvasive medicine diagnostics. Photonics Lasers Med. 3(4), 373–380 (2014a)

    Article  Google Scholar 

  • Vaks, V., Domracheva, E., Sobakinskaya, E., et al.: Sub-THz spectroscopy for security related gas detection. NATO Science for Peace and Security Series B: Physics and Biophysics, Springer Science + Business Media Dordrecht, Netherlands, pp. 189–196 (2014b)

  • Yablokov, A.A., et al.: Two-frequency THz spectroscopy for analytical and dynamical research. IEEE Trans. Terahertz Sci. Technol. 5(5), 845–851 (2015)

    Article  ADS  Google Scholar 

  • Yelleti, S., et al.: Methods of detection of explosives. In: Ram, M., Bhethanabotla, V. (eds.) Sensors for Chemical and Biological Applications, pp. 277–293. CRC, New York (2010)

    Chapter  Google Scholar 

  • Yinon, J. (ed.): Counterterrorist Detection Techniques of Explosives, 1st edn. Elsevier, Oxford (2007)

    Google Scholar 

  • Yuan, H., et al.: Terahertz wave two-dimensional transmission imaging with a backward wave oscillator. Proc. SPIE 7158, 71580T (2009)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the RSF (Grant No 15-12-10035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Vaks.

Additional information

This article is part of the Topical Collection on TERA-MIR: Materials, Generation, Detection and Applications.

Guest Edited by Mauro F. Pereira, Anna Wojcik-Jedlinska, Renata Butkute, Trevor Benson, Marian Marciniak and Filip Todorov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaks, V.L., Domracheva, E.G., Chernyaeva, M.B. et al. Methods and approaches of high resolution spectroscopy for analytical applications. Opt Quant Electron 49, 239 (2017). https://doi.org/10.1007/s11082-017-1076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-017-1076-6

Keywords

Navigation