Skip to main content
Log in

Isotopic analysis based on terahertz spectrum

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

As a new promising detection technology in the terahertz research field, the terahertz time-domain spectroscopy (THz-TDS) has very broad application potential in many fields because its advantage on the characteristic spectrum, wide spectrum and non-destructive analysis of interested substances. In this paper, the terahertz absorption spectra of gases mixed with 12CO and 13CO in the spectrum range of 0.5–2.5 THz are measured by terahertz time-domain spectroscopy for the first time. Several isotopologues can be clearly distinguished based on the difference in their rotational energies and the consequent terahertz spectrum. The experimental results show that 12CO and 13CO have obvious characteristic absorption peaks in the spectrum range of 0.5–2.5 THz due to the difference in rotational energy, and the rotational constant B can be calculated according to the experimental values to distinguish the two gaseous isotopologues. The frequency positions of the characteristic absorption peak measured by this experiment and the rotation constant B calculated according to the experimental values are compared with those previous theoretical calculations and experimental results, and they are in good agreement. This result lays a foundation for developing more sophisticated terahertz instruments to the detection of different isotopologues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Auston DH, Cheung KP, Smith PR (1984) Picosecond photoconducting Hertzian dipoles. Appl Phys Lett 45(3):284–286. https://doi.org/10.1063/1.95174

    Article  Google Scholar 

  • Bergner J, Shirley Y, Jorgensen J, Mcguire B, Aalto S, Anderson C, Chin G, Gerin M, Hartogh P, Kim D (2021) Astrochemistry with the orbiting astronomical satellite for investigating stellar systems (OASIS). Front Astron Space Sci. https://doi.org/10.3389/fspas.2021.793922

    Article  Google Scholar 

  • Burnett AD, Fan WH, Upadhya PC, Cunningham JE, Hargreaves MD, Munshi T, Edward HGM, Linfield EH, Davies AG (2009) Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. Analyst 134(8):1658–1668. https://doi.org/10.1039/b817839a

    Article  Google Scholar 

  • Cole BE, Williams JB, King BT, Sherwin MS, Stanley CR (2001) Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410(6824):60–63. https://doi.org/10.1038/35065032

    Article  Google Scholar 

  • Crocker A, Gebbie HA, Kimmit MF (1964) Stimulated emission in the far infra-red. Nature 201:250

    Article  Google Scholar 

  • Csengeri T, Wyrowski F, Menten K, Wiesemeyer H, Güsten R, Stutzki J, Heyminck S, Okada Y (2022) SOFIA/GREAT observations of OD and OH rotational lines towards high-mass star forming regions. Astron Astrophys 658:A193

    Article  Google Scholar 

  • Davies AG, Burnett AD, Fan WH, Linfield HE, Cunningham JE (2008) Terahertz spectroscopy of explosives and drugs. Mater Today 11(3):18–26. https://doi.org/10.1016/s1369-7021(08)70016-6

    Article  Google Scholar 

  • Dean P, Valavanis A, Keeley J, Bertling K, Lim YL, Alhathlool R, Chowdhury S, Taimre T, Li LH, Indjin D, Wilson SJ, Rakić AD, Linfield EH, Davies AG (2013) Coherent three-dimensional terahertz imaging through self-mixing in a quantum cascade laser. Appl Phys Lett. https://doi.org/10.1063/1.4827886

    Article  Google Scholar 

  • Drouin BJ, Yu S, Pearson JC, Gupta H (2011) Terahertz spectroscopy for space applications: 2.5–2.7 THz spectra of HD, H2O and NH3. J Mol Struct 1006(1–3):2–12. https://doi.org/10.1016/j.molstruc.2011.05.062

    Article  Google Scholar 

  • Gebbie HA, Stone NWB, Findlay FD (1964) Interferometric observations on far infra-red stimulated emission sources. Nature 202:169–170

    Article  Google Scholar 

  • Grischkowsky D, Duling I, Chen J, Chi C (1987) Electromagnetic shock waves from transmission lines. Phys Rev Lett 59(15):1663–1666. https://doi.org/10.1103/PhysRevLett.59.1663

    Article  Google Scholar 

  • Gulkis S, Alexander C (2008) Composition measurements of a comet from the Rosetta orbiter spacecraft. Space Sci Rev 138(1–4):259–274. https://doi.org/10.1007/s11214-008-9335-2

    Article  Google Scholar 

  • Harde H, Keiding S, Grischkowsky D (1991) THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay. Phys Rev Lett 66(14):1834–1837

    Article  Google Scholar 

  • Harde H, Katzenellenbogen N, Grischkowsky D (1994) Terahertz coherent transients from methyl chloride vapor. Opt Soc Am B 11(6):1018–1030

    Article  Google Scholar 

  • Hu Y, Wang XH, Guo LT, Zhang CL (2006) Terahertz time-domain spectroscopic study of carbon monoxide. Spectrosc Spectr Anal 26(6):4

    Google Scholar 

  • Jacobsen RH, Mittleman DM, Nuss MC (1996) Chemical recognition of gases and gas mixtures with terahertz waves. Opt Lett 21(24):2011–2013

    Article  Google Scholar 

  • Jnawali G, Rao Y, Yan H, Heinz TF (2013) Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett 13(2):524–530. https://doi.org/10.1021/nl303988q

    Article  Google Scholar 

  • Kampfrath T, Tanaka K, Nelson KA (2013) Resonant and nonresonant control over matter and light by intense terahertz transients. Nat Photonics 7(9):680–690. https://doi.org/10.1038/nphoton.2013.184

    Article  Google Scholar 

  • Kim G-R, Lee H-B, Jeon T-I (2020) Terahertz time-domain spectroscopy of low-concentration N2O using long-range multipass gas cell. IEEE Trans Terahertz Sci Technol 10(5):524–530. https://doi.org/10.1109/tthz.2020.2997601

    Article  Google Scholar 

  • Klapper G, Surin, L, Lewen, F, Muller HSP, Pak I, Winnewisser G (2003) Laboratory precision measurements of the rotational spectrum of 12C17O and 13C17O. Astrophys J 582:262–268

  • Liu SG, Zhong RB (2009) Recent development of terahertz science and technology and it’s applications. J Univ Electron Sci Technol China 38(05):481–486

    Google Scholar 

  • Martin VE, Fattinger C, Grischkows D (1989) Terahertz time-domain spectroscopy of water vapor. Opt Lett 55(4):337–339

    Google Scholar 

  • Mittleman DM, Jacobsen RH, Neelamani R, Baraniuk RG, Nuss MC (1998) Gas sensing using terahertz time-domain spectroscopy. Appl Phys B Lasers Opt 67(3):379

    Article  Google Scholar 

  • Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev Sci Instrum 18:398

    Article  Google Scholar 

  • Nolt I, Radostitz J, Dilonardo G, Evenson K, Jennings D, Leopold K, Vanek MD, Zink L, Hinz A, Chance K (1987) Accurate rotational constants of CO, HCl, and HF: spectral standards for the 0.3- to 6-THz (10- to 200-cm-1) region. J Mol Spectrosc 125(2):274–287

    Article  Google Scholar 

  • Pang ZY, Wang XC, Li SL, Lang YC, Tian YR, Lu L (2022) Research on the methods for measuring clumped isotope of methane by high-resolution gas stable isotope mass spectrometer. Chin J Anal Lab. https://doi.org/10.13595/j.cnki.issn1000-0720.2021.111703

    Article  Google Scholar 

  • Phillips TG, Keene J (1992) Submillimeter astronomy. Proc IEEE 80(11):1662–1678

    Article  Google Scholar 

  • Schall M, Walther M, Jepsen PU (2001) Fundamental and second-order phonon processes in CdTe and ZnTe. Phys Rev B. https://doi.org/10.1103/PhysRevB.64.094301

    Article  Google Scholar 

  • Schwan D, Ade PA, Basu K, Bender AN, Bertoldi F, Cho HM, Chon G, Clarke J, Dobbs M, Ferrusca D, Gusten R, Halverson NW, Holzapfel WL, Horellou C, Johansson D, Johnson BR, Kennedy J, Kermish Z, Kneissl R, Lanting T, Lee AT, Lueker M, Mehl J, Menten KM, Muders D, Pacaud F, Plagge T, Reichardt CL, Richards PL, Schaaf R, Schilke P, Sommer MW, Spieler H, Tucker C, Weiss A, Westbrook B, Zahn O (2011) Invited article: millimeter-wave bolometer array receiver for the Atacama pathfinder experiment Sunyaev-Zel’dovich (APEX-SZ) instrument. Rev Sci Instrum 82(9):091301. https://doi.org/10.1063/1.3637460

    Article  Google Scholar 

  • Siegel PH (2003) THz technology: an overview. Int J High Speed Electron Syst 13(02):351–394

    Article  Google Scholar 

  • Sun HQ, Ding JY, YuliyaZotava B (2007) Differentiation of CO isotopic variants by frequency tuning a terahertz source. Appl Opt 46(19):3976–3980

    Article  Google Scholar 

  • Young ED, Rumble D, Freedman P, Mills M (2016) A large-radius high-mass-resolution multiple-collector isotope ratio mass spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other gases. Int J Mass Spectrom 401:1–10. https://doi.org/10.1016/j.ijms.2016.01.006

    Article  Google Scholar 

  • Zhang XC, Jin Y (1993) Principle and application of photoinduced electromagnetic radiation. Physics 22(3):136–140

    Google Scholar 

  • Zhang C, Mu K (2010) Terahertz spectroscopy and imaging. Laser Optoelectron Prog 2:14. https://doi.org/10.1007/978-3-642-29564-51

    Article  Google Scholar 

  • Zhao GZ (2006) Application and outlook of THz spectroscopy and imaging. Mod Sci Instrum 02:36–40

    Google Scholar 

  • Zink L, Natale P, Pavone F, Prevedelli M, Evenson K, Inguscio M (1990) Rotational far infrared spectrum of 13CO. J Mol Spectrosc 143(2):304–310

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by Chinese NSF project (42130114), the strategic priority research program (B) of CAS (XDB41000000) and the pre-research Project on Civil Aerospace Technologies No. D020202 funded by Chinese National Space Administration (CNSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu.

Ethics declarations

Conflict of interest

The authors whose names are listed above certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript. On behalf of all authors, the corresponding authors state that there is no conflict of interest. Yun Liu is Depyty Editor-in-Chief of Acta Geochimica. He was not involved in the journal’s review of, or decisions related to, this manuscript. The authors have no other competing interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Liu, Y. Isotopic analysis based on terahertz spectrum. Acta Geochim 42, 859–869 (2023). https://doi.org/10.1007/s11631-023-00622-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-023-00622-w

Keywords

Navigation