Skip to main content
Log in

Investigation of Structural Re-ordering of Hydrogen Bonds in LiNbO3:Mg Crystals Around the Threshold Concentration of Magnesium

  • Published:
Journal of Applied Spectroscopy Aims and scope

Crystals of LiNbO3congr and LiNbO3:Mg (0.19–5.91 mole %) were studied by IR and Raman spectroscopy. It was found that the intensities of the bands corresponding to the stretching vibrations of the ОН groups in the IR spectra of LiNbO3:Mg crystals change and components of the bands disappear with increase of the Mg content. This was explained by disappearance of the ОН groups close to \( {\mathrm{Nb}}_{\mathrm{Li}}^{4+}-{\mathrm{V}}_{\mathrm{Li}}^{-} \) defects as a result of displacement of NbLi defects by Mg cations. In the Raman spectra of the LiNbO3:Mg (5.1 mole %) compared with the congruent crystal the lines corresponding to the vibrations of oxygen atoms in the oxygen octahedra and the stretching bridge vibrations of the oxygen atoms along the polar axis become broader, and new low-intensity lines that may correspond to pseudoscalar vibrations of A2-type symmetry also appear. The broadening of the lines is due to deformation of the oxygen octahedra caused both by increase of the Mg content in the crystal structure and by change in the localization of the protons. Suppression of the photorefraction effect in the LiNbO3:Mg crystals with Mg contents above the threshold level can be explained by change in the localization of the protons in the structure and by screening of the space charge field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, Adv. Phys., 45, No. 5, 349–392 (1996).

    Article  ADS  Google Scholar 

  2. K. Lеngyel, A. Peter, L. Kovacs, G. Corradi, L. Palfavi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, and K. Polgar, Appl. Phys. Rev., No. 2, 040601–040628 (2015).

  3. M. D. Fontana and P. Bourson, Appl. Phys. Rev., No. 2, 040602-1–040602-14 (2015).

  4. A. Grone and S. Kapphan, J. Phys. Chem. Sol., 56, 687–701 (1995).

    Article  ADS  Google Scholar 

  5. Y. Kong, W. Zhang, X. Chen, J. Xu, and G. Zhang, J. Phys.: Condens. Matter, No. 11, 2139–2143 (1999).

  6. K. Polgar, A. Peter, L. Kovacs, G. Corrdsi, and Zs. Szaller, J. Cryst. Growth, 177, 211–216 (1997).

    Article  ADS  Google Scholar 

  7. L. Kovacs, M. Wöhlecke, A. Jovanovic, K. Polgar, and S. Kapphan, J. Phys. Chem. Solids, 52, No. 6, 797–803 (1991).

    Article  ADS  Google Scholar 

  8. G. Dravecz and L. Kovacs, Appl. Phys. B, 88, 305–307 (2007).

    Article  ADS  Google Scholar 

  9. Y. Kong, W. Zhang, J. Xu, W. Yan, H. Liu, X. Xie, X. Li, L. Shi, and G. Zhang, Infrared Phys. Technol., 45, 281–289 (2004).

    Article  ADS  Google Scholar 

  10. L. Arizmendi, E. J. Ambite, and J. L. Plaza, Opt. Mater., 35, 2411–2413 (2013).

    Article  ADS  Google Scholar 

  11. D. I. Shevtsov, I. S. Azanova, I. F. Taisin, and A. B. Volyntsev, FTT, 48, No. 6, 996–1000 (2006) [D. I. Shevtsov, I. S. Azanova, I. F. Taǐsin, and A. B. Volyntsev, Phys. Sol. State, 48, No. 6, 1059–1063 (2006)].

  12. M. N. Palatinkov, N. V. Saidorov, I. V. Biryukova, O. B. Shcherbina, and V. T. Kalinnikov, Perspekt. Mater., No. 2, 93–97 (2011).

  13. N. V. Sidorov, T. R. Volk, B. E. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons [in Russian], Nauka, Moscow (2003)

    Google Scholar 

  14. G. Kh. Kitaeva, K. A. Kuznetzov, I. I. Naumova, and A. N. Penin, Kvant. Élektron., 30, No. 8, 726–732 (2000) [G. Kh. Kitaeva, K. A. Kuznetzov, I. I. Naumova, and A. N. Penin, Quantum Electron., 30, No. 8, 732–737 (2000)].

  15. X. Q. Feng and T. B. Tang, J. Phys. Condens. Matter, No. 5, 2423–2430 (1993).

  16. A. A. Anik’ev, N. V. Sidorov, and Yu. A. Serebrakov, Zh. Prikl. Spektrosk., 56, No. 4, 670–672 (1992).

    Google Scholar 

  17. N. V. Sidorov and Yu. A. Serebryakov, Vibr. Spectrosc., 6, 215–223 (1994).

    Article  Google Scholar 

  18. D. A. Bryan, R. Gerson, and H. E. Tomaschke, Appl. Phys. Lett., 44, 847–849 (1984).

    Article  ADS  Google Scholar 

  19. V. Caciuc, A. V. Postnikov, and G. Borstel, Phys. Rev. B, 61, No. 13, 8806–8813 (2000).

    Article  ADS  Google Scholar 

  20. K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. B, 61, 272–278 (2000).

    Article  ADS  Google Scholar 

  21. N. V. Sidorov and M. N. Palatnikov, Opt. Spektrosk., 121, No. 6, 907–915 (2016) [N. V. Sidorov and M. N. Palatnikov, Opt. Spectrosc., 121, No. 6, 842–850 (2016)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Sidorov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, pp. 521–526, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Teplyakova, N.A., Palatnikov, M.N. et al. Investigation of Structural Re-ordering of Hydrogen Bonds in LiNbO3:Mg Crystals Around the Threshold Concentration of Magnesium. J Appl Spectrosc 84, 549–554 (2017). https://doi.org/10.1007/s10812-017-0509-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0509-0

Keywords

Navigation