Skip to main content
Log in

SERS Activity of Silver Nanoparticles Functionalized with A Desferrioxamine B Derived Ligand for FE(III) Binding and Sensing

  • Published:
Journal of Applied Spectroscopy Aims and scope

We report the SERS activity of colloidal silver nanoparticles functionalized with a ligand, derived from the siderophore desferrioxamine B (desferal, DFO), an iron chelator widely used in biological and medical applications. The ligand was equipped with a sulfur-containing moiety to ensure optimal binding with silver surfaces. By means of Raman and SERS effects we monitored the route of material preparation from the modified DFO–S molecule to the colloidal aggregates. The results indicate that the functionalization of the chelating agent does not affect its binding ability towards Fe(III). The resulting functionalized silver nanoparticles are a promising SERS tag for operation in biological environments. The Fe–O stretching signature, arising when DFO–S grafted to silver nanoparticles binds Fe(III), could provide a tool for cation sensing in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett., 26, 163–166 (1974).

    Article  ADS  Google Scholar 

  2. M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc., 99, 5215–5217 (1977).

    Article  Google Scholar 

  3. D. L. Jeanmarie and R. P. Van Duyne, J. Electroanal. Chem. Interf. Electrochem., 84, 1–20 (1977).

    Article  Google Scholar 

  4. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, and J. Popp, Anal. Bioanal. Chem., 403, 27–54 (2012).

    Article  Google Scholar 

  5. M. Shaban, A. G. A. Hady, and M. Serry, IEEE Sensors J., 14, 436–441 (2014).

    Article  Google Scholar 

  6. E. C. Le Ru and P.G. Etchegoin, Annu. Rev. Phys. Chem., 63, 65–87 (2012).

    Article  ADS  Google Scholar 

  7. P. Chen, Z. Y. Wang, S. F. Zong, H. Chen, D. Zhu, Y. Zhong, and Y. P. Cui, Anal. Bioanal. Chem., 406, 25, 6337–6346 (2014).

    Article  Google Scholar 

  8. S. Thatai, P. Khurana, S. Prasad, and D. Kumar, Microchem. J., 113, 77–82 (2014).

    Article  Google Scholar 

  9. H. H. Wang, T. Y. Cheng, P. Sharma, F. Y. Chiang, S. Wen-Yu Chiu, J. K. Wang, and Y. L.Wang, Nanotechnology, 22, 385702–385708 (2011).

  10. K. Kneipp, M. Moskovits, and H. Kneipp, (Eds.), Surface-Enhanced Raman ScatteringPhysics, Applications, Springer-Verlag, Berlin (2006).

    Google Scholar 

  11. E. M. Hetrick and M. H. Schoenfisch, Chem. Soc. Rev., 35, 780–789 (2006).

    Article  Google Scholar 

  12. P. N. Danese, Chem. Biol., 9, 873–880 (2002).

    Article  Google Scholar 

  13. E. Weir, A. Lawlor, A. Whelan, and F. Regan, Analyst, 7, 835–845 (2008).

    Article  ADS  Google Scholar 

  14. M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv., 27, 76–83 (2009).

    Article  Google Scholar 

  15. E. J. Fernandez, J. Garcia-Barrasa, A. Laguna, J. M. Lopez-de-Luzuriaga, M. Monge, and C. Torres, Nanotechnology, 19, 185602–185608 (2008).

    Article  ADS  Google Scholar 

  16. G. A. Martìnez-Castanon, N. Nino-Martìnez, F. Martìnez-Gutierrez, J. R. Martìnez-Mendoza, and F. Ruiz, J. Nanoparticle Res., 10, 1343–1348 (2008).

    Article  Google Scholar 

  17. A. Gade, A. Ingle, C. Whiteley, and M. Rai, Biotechnol. Lett., 32, 593–600 (2010).

    Article  Google Scholar 

  18. E. Amato, Y. A. Diaz-Fernandez, A. Taglietti, P. Pallavicini, L. Pasotti, L. Cucca, C. Milanese, P. Grisoli, C. Dacarro, J. M. Fernandez-Hechavarria, and V. Necchi, Langmuir, 27, 9165–9173 (2011).

    Article  Google Scholar 

  19. P. Pallavicini, A. Taglietti, G. Dacarro, Y. A. Diaz-Fernandez, M. Galli, P. Grisoli, M. Patrini, G. Santucci De Magistris, and R. Zanoni, J. Colloid Interface Sci., 350, 110–116 (2010).

    Article  Google Scholar 

  20. A. Taglietti, Y. A. Diaz-Fernandez, E. Amato, L. Cucca, G. Dacarro, P. Grisoli, V. Necchi, P. Pallavicini, L. Pasotti, and M. Patrini, Langmuir, 28, 8140–8148 (2012).

    Article  Google Scholar 

  21. P. K. Singh, M. R. Parsk, E. P. Greenberg, and M. J. Welsh, Nature, 417, 552–555 (2002).

    Article  ADS  Google Scholar 

  22. M. Lyte, P. Freestone, C. P. Neal, B. A. Olson, R. D. Haig, R. Baystone, and P. H. Williams, Lancet, 361, 130–135 (2003).

    Article  Google Scholar 

  23. R. Perlmutter and B. Sanders, Calif. Med., 104, 313–314 (1966).

    Google Scholar 

  24. R. D. Propper, B. Cooper, R. R. Rufo, A. W. Nienhuis, W. F. Anderson, H. F. Bunn, A. Rosenthal, and D. G. Nathan, N. Engl. J. Med., 297, 418–423 (1977).

    Article  Google Scholar 

  25. S. Tavill, Hepatology, 33, 1321–1328 (2001).

    Article  Google Scholar 

  26. G. M. Brittenham, P. M. Griffith, A. W Nienhuis., C. E. McLaren, N. S. Young, E. E. Tucker, C. J. Allen, D. E. Farrell, and J. W. Harris, N. Engl. J. Med., 331, 567–573 (1994).

    Article  Google Scholar 

  27. S. Ishida, M. Arai, H. Niikawa, and M. Kobayashi, Biol. Pharm. Bull., 34, 917–920 (2011).

    Article  Google Scholar 

  28. A. Banin, A. Lozinski, K. M. Brady, E. Berenshtein, P. W. Butterfield, M. Moshe, M. Chevion, E. P. Greenberg, and E. Banin, Proc. Natl. Acad. Sci. USA, 105, 16761–16766 (2008).

    Article  ADS  Google Scholar 

  29. R. R. Traut, A. Bollen, T. T. Sun, J. W. B. Hershey, J. Sundberg, and L. R. Pierce, Biochemistry, 12, 3266–3273 (1973).

    Article  Google Scholar 

  30. S. Dhunganga, P. S. White, and A. L. Crumbliss, J. Biol. Inorg. Chem., 6, 810–818 (2001).

    Article  Google Scholar 

  31. B. Borgias, A. D. Hugi, and K. N. Raymond, Inorg. Chem., 28 (18), 3538–3545 (1989).

    Article  Google Scholar 

  32. S. Terrani, Funzionalizzazione multistrato di vetri con nanoparticelle di Ag e desferoxamina – SH, Ph. D. Thesis, University of Pavia (2012).

  33. R. Singh, L. Kats, W. A. Blätter, and J. M. Lambert, Anal. Biochem., 236, 114–125 (1996).

    Article  Google Scholar 

  34. O. Cozar, N. Leopold, C. Jelic, V. Chis, L. David, A. Mocanu, and M. Tomoaia-Cotisel, J. Mol. Struct., 788, 1–3 (2006).

    Article  ADS  Google Scholar 

  35. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Annu. Rev. Anal. Chem., 1, 601–626 (2008).

    Article  Google Scholar 

  36. D. C. Edwards, S. B. Nielsen, A. A. Jarzęcki, T. G. Spiro, and S. C. B. Myneni, Geochim. Cosmochim. Acta, 69, 3237–3248 (2005).

    Article  ADS  Google Scholar 

  37. W. Duckworth, J. R. Bargar, A. A. Jarzecki, O. Oyerinde, T. G. Spiro, and G. Sposito, Mar. Chem., 113, 114–122 (2009).

    Article  Google Scholar 

  38. O. J. Billmann, J. Eickmans, U. Ertuerk, and C. Pettenkofer, Surf. Sci., 138, 319–338 (1984).

    Article  ADS  Google Scholar 

  39. O. I. Mrozek, H. Grabhorn, and W. Akemann, J. Phys.: Condens. Matter, 76, 2444–2447 (1992).

    Google Scholar 

  40. J. A. Creighton, Surf. Sci., 124, 209–219 (1983).

    Article  ADS  Google Scholar 

  41. M. Moskovits and J. S. Suh, J. Phys. Chem., 88, 5526–5530 (1984).

    Article  Google Scholar 

  42. M. Venkataramanan, G. Skanth, K. Bandyopadhyay, K. Vijayamohanan, and T. Pradeep, J. Colloid Interf. Sci., 212, 553–561 (1999).

    Article  Google Scholar 

  43. N. Biswas, S. Thomas, A. Sarkar, T. Mukherjee, and S. Kapoor, Chem. Phys. Lett., 479, 248–254 (2009).

    Article  ADS  Google Scholar 

  44. A. Watanabe and H. Maeda, J. Phys. Chem., 93, 3258–3260 (1989).

    Article  Google Scholar 

  45. O. Skadtchenko and R. Aroca, Spectrochim. Acta, A, 57, 1009–1016 (2001).

    Article  ADS  Google Scholar 

  46. K. M. Mukherjee and T. N. Misra, Spectrochim. Acta, A, 53, 1439–1444 (1997).

    Article  ADS  Google Scholar 

  47. G. A. Bowmaker and L. C. Tan, Aust. J. Chem., 32, 1443–1452 (1979).

    Article  Google Scholar 

  48. B. Wrzosek, J. Bukowska, and A. Kudelski, Vib. Spectrosc., 39, 257–261 (2005).

    Article  Google Scholar 

  49. A. Szafranski, W. Tanner, P. E. Laibinis, and R. L. Garrell, Langmuir, 14, 3570–3579 (1998).

    Article  Google Scholar 

  50. B. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C, 111, 13794–13803 (2007).

    Article  Google Scholar 

  51. Taglietti, Y. A. Diaz Fernandez, P. Galinetto, P. Grisoli, C. Milanese, and P. Pallavicini, J. Nanopart. Res., 15, 11, 1–13 (2013).

    Article  Google Scholar 

  52. J. Yin, T. Wu, J. Song, Q. Zhang, S. Liu, R. Xu, and H. Duan, Chem. Mater., 23, 4756–4764 (2011).

    Article  Google Scholar 

  53. Yan, Y. K. Shrestha, and C. L. Spurgeon, Chem. Commun., 49, 7962–7964 (2013).

    Article  Google Scholar 

  54. E. G. Roy, C. Jiang, M. L.Wells, and C. Tripp, Anal. Chem., 80, 4689–4695 (2008).

    Article  Google Scholar 

  55. D. Tsoutsi, L. Guerrini, J. M. Hermida-Ramon, V. Giannini, L. M. Liz-Marzan, A. Wei, and R. A. Alvarez-Puebla, Nanoscale, 5, 5841–5846 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Galinetto.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 6, p. 968, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galinetto, P., Taglietti, A., Pasotti, L. et al. SERS Activity of Silver Nanoparticles Functionalized with A Desferrioxamine B Derived Ligand for FE(III) Binding and Sensing. J Appl Spectrosc 82, 1052–1059 (2016). https://doi.org/10.1007/s10812-016-0228-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0228-y

Keywords

Navigation