Skip to main content

Advertisement

Log in

Improved biomass production of a microalga through adaptative laboratory evolution to a high light environment

  • Research
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae produce a wide range of biomolecules with commercial applications and thus maximizing algal productivity in these systems is of central importance. Although, photosynthesis requires light, microalgae have limited productivity when their photosystem is exposed to excessive light irradiance and become photoinhibited. Here, we perform adaptative laboratory evolution to improve the light harvesting efficiency of Chlamydomonas reinhardtii under high irradiance. In doing so, we also test whether manipulating the genetic variation of the lineages under selection, through UV mutagenesis, or creating mixed strains with a single, or five generations of recombination prior to selection, increases the evolutionary response. Our results indicate that selection under high light increases total pigment production and the ratios of carotenoids to chlorophyll-a and chlorophyll-a to chlorophyll-b. These changes likely increase photoprotection and make the photosystem more efficient by reducing the size of light-harvesting antennae. Measurements of the maximum potential quantum efficiency of Photosystem II suggest that high light intensity selected lines were more stressed under normal light conditions indicative of a trade-off between light environments. Contrary to expectations, we found that different strains responded equally to selection, irrespective of whether they were single or mixed strains or pre-treated with UV radiation. Our study provides further evidence of the utility of adaptative laboratory evolution as a tool for enhancing biomass production and high-light resistance in C. reinhardtii and suggests that significant evolutionary responses can be achieved without the need for mixing or inducing mutations through UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aminot A, Rey F (2001) Chlorophyll a: Determination by spectroscopic methods. ICES Techniqnes in Marine Environmental Sciences 30:17

  • Ansari AA, Khoja AH, Nawar A, Qayyum M, Ali E (2017) Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production. Appl Water Sci 7:4151–4158

    Article  CAS  Google Scholar 

  • Arora N, Pienkos PT, Pruthi V, Poluri KM, Guarnieri MT (2018) Leveraging algal omics to reveal potential targets for augmenting TAG accumulation. Biotechnol Adv 36:1274–1292

    Article  CAS  PubMed  Google Scholar 

  • Ban S, Lin W, Luo Z, Luo J (2019) Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma. Bioresour Technol 275:425–429

    Article  CAS  PubMed  Google Scholar 

  • Barrett RDH, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23:38–44

  • Barsanti L, Gualtieri P (2014) Algae: Anatomy, Biochemistry, and Biotechnology, 2nd ed. CRC Press, Boca Raton, pp 361

  • Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

  • Becks L, Agrawal AF (2011) The effect of sex on the mean and variance of fitness in facultatively sexual rotifers. J Evol Biol 24:656–664

    Article  CAS  PubMed  Google Scholar 

  • Bujaldon S, Kodama N, Rappaport F, Subramanyam R, de Vitry C, Takahashi Y, Wollman FA (2017) Functional accumulation of antenna proteins in chlorophyll b-less mutants of Chlamydomonas reinhardtii. Mol Plant 10:115–130

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  • Colegrave N (2002) Sex releases the speed limit on evolution. Nature 420:664–666

    Article  CAS  PubMed  Google Scholar 

  • Colegrave N, Kaltz O, Bell G (2002) The ecology and genetics of fitness in Chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56:14–21

  • de Visser JAGM, Hoekstra RF, Van den Ende H (1996) The effect of sex and deleterious mutations on fitness in Chlamydomonas. Proc R Soc B 263:193–200

    Article  Google Scholar 

  • de Visser JAGM, Park S-C, Krug J (2008) Exploring the effect of sex on an empirical fitness landscape. Am Nat 174:S15–S30

    Article  Google Scholar 

  • Diao J, Song X, Cui J, Liu L, Shi M, Wang F, Zhang W (2019) Rewiring metabolic network by chemical modulator based laboratory evolution doubles lipid production in Crypthecodinium cohnii. Metab Eng 51:88–98

    Article  CAS  PubMed  Google Scholar 

  • Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534–2544

    Article  CAS  Google Scholar 

  • Erickson E, Wakao S, Niyogi KK (2015) Light stress and photoprotection in Chlamydomonas reinhardtii. Plant J 82:449–465

    Article  CAS  PubMed  Google Scholar 

  • Faé Neto WA, Borges CRM, Abreu PC (2018) Carotenoid production by the marine microalgae Nannochloropsis oculata in different low-cost culture media. Aquacult Res 49:2527–2535

    Article  Google Scholar 

  • Fitzpatrick MJ (2004) Pleiotropy and the genomic location of sexually selected genes. Am Nat 163:800–808

    Article  PubMed  Google Scholar 

  • Flowers JM, Hazzouri KM, Pham GM, Rosas U, Bahmani T, Khraiwesh B, Nelson DR, Jijakli K, Abdrabu R, Harris EH, Lefebvre PA, Hom EF, Salehi-Ashtiani K, Purugganan MD (2015) Whole-genome resequencing reveals extensive natural variation in the model green alga Chlamydomonas reinhardtii. Plant Cell 27:2353–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Förster B, Osmond CB, Boyntona JE, Gillham NW (1999) Mutants of Chlamydomonas reinhardtii resistant to very high light. J Photochem Photobiol B 48:127–135

    Article  Google Scholar 

  • Fu W, Gudmundsson O, Feist AM, Herjolfsson G, Brynjolfsson S, Palsson BØ (2012) Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol 161:242–249

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta Gen Subj 990:87–92

    Article  CAS  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  CAS  PubMed  Google Scholar 

  • Haire TC, Bell C, Cutshaw K, Swiger B, Winkelmann K, Palmer AG (2018) Robust microplate-based methods for culturing and in vivo phenotypic screening of Chlamydomonas reinhardtii. Front Plant Sci 9:235

  • Han S, Kim S, Lee C, Choi YE (2019) Blue-red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina. J Microbiol 57:101–106

    Article  CAS  PubMed  Google Scholar 

  • Hariz HB, Takriff MS (2017) Palm oil mill effluent treatment and CO2 sequestration by using microalgae—sustainable strategies for environmental protection. Environ Sci Pollut Res 24:20209–20240

    Article  CAS  Google Scholar 

  • Hasan AR, Duggal JK, Ness RW (2019) Consequences of recombination for the evolution of the mating type locus in Chlamydomonas reinhardtii. New Phytol 224:1339–1348

    Article  PubMed  Google Scholar 

  • Hermisson J, Pennings PS (2005) Soft sweeps: Molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Tang X, Bi Z, Zhao Q, Ren L (2021) Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid. Algal Res 54:102212.

  • Jägerbrand AK, Kudo G (2016) Short-term responses in maximum quantum yield of PSII (Fv/Fm) to ex situ temperature treatment of populations of bryophytes originating from different sites in Hokkaido, Northern Japan. Plants 5:455–465

  • Jiang X, Stern D (2009) Mating and tetrad separation of Chlamydomonas reinhardtii for genetic analysis. J Vis Exp 30:1274

  • Jin ES, Polle JEW, Lee HK, Hyun SM, Chang M (2003) Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol 13:165–174

    CAS  Google Scholar 

  • Kim Y, Orr HA (2005) Adaptation in sexuals vs. asexuals: Clonal interference and the Fisher-Muller model. Genetics 171:1377–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Z-H, Kim K, Park H, Lee CS, Nam SW, Yim KJ, Jung YJ, Hong S-J, Lee G-C (2021) Enhanced fatty acid productivity by Parachlorella sp., a freshwater microalga, via adaptive laboratory evolution under salt stress. Biotechnol Bioprocess Eng 26:223–231

    Article  CAS  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sex. Nature 336:435–440

  • Kraemer SA, Morgan AD, Ness RW, Keightley PD, Colgrave N (2016) Fitness effects of new mutations in Chlamydomonas reinhardtii across two stress gradients. J Evol Biol 29:583–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S (2015) GM Algae for biofuel production: biosafety and risk assessment. Collect Biosaf Rev 9:52–75

    Google Scholar 

  • Lachapelle J, Colegrave N (2017) The effect of sex on the repeatability of evolution in different environments. Evolution 71:1075–1087

    Article  PubMed  Google Scholar 

  • LaPanse AJ, Krishnan A, Posewitz MC (2021) Adaptive Laboratory Evolution for algal strain improvement: methodologies and applications. Algal Res 53:102122

    Article  Google Scholar 

  • Leister D (2017) Experimental evolution in photoautotrophic microorganisms as a means of enhancing chloroplast functions. Essays Biochem 62:77–84

    Google Scholar 

  • Lenth RV (2016) Least-squares means: The R package lsmeans. J Stat Softw 69:1–33. https://doi.org/10.18637/jss.v069.i01

  • Li D, Wang L, Zhao Q, Wei W, Sun Y (2015) Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour Technol 185:269–275

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Malerba ME, Palacios MM, Palacios Delgado YM, Beardall J, Marshall DJ (2018) Cell size, photosynthesis and the package effect: an artificial selection approach. New Phytol 219:449–461

    Article  CAS  PubMed  Google Scholar 

  • Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G (2022) Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 54:107795

    Article  CAS  PubMed  Google Scholar 

  • McDonald MJ, Rice DP, Desai MM (2016) Sex speeds adaptation by altering the dynamics of molecular evolution. Nature 531:233–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Nakajima Y, Ueda R (1997) Improvement of photosynthesis in dense microalgal suspension by reduction of light harvesting pigments. J Appl Phycol 9:503–510

    CAS  Google Scholar 

  • Nakajima Y, Ueda R (2000) The effect of reducing light-harvesting pigment on marine microalgal productivity. J Appl Phycol 12:285–290

    Article  CAS  Google Scholar 

  • Nakajima Y, Tsuzuki M, Ueda R (2001) Improved productivity by reduction of the content of light-harvesting pigment in Chlamydomonas perigranulata. J Appl Phycol 13:95–101

    Article  CAS  Google Scholar 

  • Nama S, Madireddi SK, Yadav RM, Subramanyam R (2019) Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. Photosynth Res 139:387–400

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Björkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrine Z, Negi S, Sayre RT (2012) Optimization of photosynthetic light energy utilization by microalgae. Algal Res 1:134–142

    Article  Google Scholar 

  • Polle JEW, Benemann JR, Tanaka A, Melis A (2000) Photosynthetic apparatus organization and function in the wild type and a chlorophyll b-less mutant of Chlamydomonas reinhardtii. Dependence on Carbon Source Planta 211:335–344

    CAS  PubMed  Google Scholar 

  • Polle JEW, Kanakagiri S, Jin ES, Masuda T, Melis A (2002) Truncated chlorophyll antenna size of the photosystems - A practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264

    Article  CAS  Google Scholar 

  • Pröschold T, Harris EH, Coleman AW (2005) Portrait of a species: Chlamydonomas reinhardtii. Genetics 170:1601–1610

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP, al, (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliff WC, Herron MD, Howell K, Pentz JT, Rosenzweig F, Travisano M (2013) Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat Commun 4:2742

    Article  PubMed  Google Scholar 

  • Renaut S, Replansky T, Heppleston A, Bell G (2006) The ecology and genetics of fitness in Chlamydomonas. XIII. Fitness of long-term sexual and asexual populations in benign environments. Evolution 60:2272

    Article  PubMed  Google Scholar 

  • Rengefors K, Kremp A, Reusch TBH, Wood AM (2017) Genetic diversity and evolution in eukaryotic phytoplankton: Revelations from population genetic studies. J Plankton Res 39:165–179

    Google Scholar 

  • Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, Lemaire SD, Mittag M, Wagner V (2009) Chlamydomonas proteomics. Curr Opin Microbiol 12:285–291

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Mishra B, Sindhu R, Binod P, Tiwari A (2022) Nutrient acclimation in benthic diatoms with adaptive laboratory evolution. Bioresour Technol 351:126955

    Article  CAS  PubMed  Google Scholar 

  • Scaife MA, Nguyen GTDT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J 82:532–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaum CE, Barton S, Bestion E et al (2017) Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol 1:94

    Article  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Scheuerl T, Stelzer CP (2017) Sex initiates adaptive evolution by recombination between beneficial loci. PLoS One 12:e0177895

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze PSC, Guerra R, Pereira H, Schüler LM, Varela JCS (2017) Flashing LEDs for microalgal production. Trends Biotechnol 35:1088–1101

    Article  CAS  PubMed  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakaminathan S, Hankamer B, Wolf J, Yarnold J (2018) High-throughput optimisation of light-driven microalgae biotechnologies. Sci Rep 8:11687

    Article  PubMed  PubMed Central  Google Scholar 

  • Sivaramakrishnan R, Suresh S, Incharoensakdi A (2019) Chlamydomonas sp. as dynamic biorefinery feedstock for the production of methyl ester and ɛ-polylysine. Bioresour Technol 272:281–287

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko AE (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ Plant Physiol 60:1–13

    Article  CAS  Google Scholar 

  • Solovchenko A, Neverov K (2017) Carotenogenic response in photosynthetic organisms: a colorful story. Photosynth Res 133:31–47

    Article  CAS  PubMed  Google Scholar 

  • Spicer A, Molnar A (2018) Gene editing of microalgae: scientific progress and regulatory challenges in Europe. Biol (Basel) 7:21

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: Toward a green revolution. Trends Biotechnol 29:615–623

    Article  CAS  PubMed  Google Scholar 

  • Team RC (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Virtanen O, Valev D, Kruse O, Wobbe L, Tyystjärvi E (2019) Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of Chlamydomonas reinhardtii. Photosynthetica 57:617–626

    Article  CAS  Google Scholar 

  • Vogwill T, Lagator M, Colegrave N, Neve P (2012) The experimental evolution of herbicide resistance in Chlamydomonas reinhardtii results in a positive correlation between fitness in the presence and absence of herbicides. J Evol Biol 25:1955–1964

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xue C, Wang L, Zhao Q, Wei W, Sun Y (2016) Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresour Technol 205:264–268

    Article  CAS  PubMed  Google Scholar 

  • White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol 102:1675–1682

    Article  CAS  PubMed  Google Scholar 

  • Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Yadav G, Karemore A, Dash SK, Sen R (2015) Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresour Technol 191:399–406

    Article  CAS  PubMed  Google Scholar 

  • Yarnold J, Ross IL, Hankamer B (2015) Photoacclimation and productivity of Chlamydomonas reinhardtii grown in fluctuating light regimes which simulate outdoor algal culture conditions. Algal Res 13:182–194

    Article  Google Scholar 

  • Yu S, Zhao Q, Miao X, Shi J (2013) Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresour Technol 147:499–507

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Müller BSF, Tyre KN, Hersh HL, Bai F, Hu Y, Resende MFR Jr, Rathinasabapathi B, Settles AM (2020) Competitive growth assay of mutagenized Chlamydomonas reinhardtii compatible with the international space station veggie plant growth chamber. Front Plant Sci 11:631

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Australian Research Council grant DP170100554(JLT). Wladimir Angelino Fae Neto was supported by the Australian Government Research Training Program (RTP) Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Wladimir A Fae Neto: Conceptualization, Methodology, Investigation, Formal analysis, Visualization, Writing—original draft, Writing – review & editing. W. Jason Kennington: Conceptualization, Formal analysis, Visualization, Supervision, Writing – review & editing. Joseph L. Tomkins: Conceptualization, Resources, Writing – review & editing, Funding acquisition, Visualization, Supervision.

Corresponding author

Correspondence to Wladimir A. Fae Neto.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.28 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fae Neto, W.A., Tomkins, J.L. & Kennington, W.J. Improved biomass production of a microalga through adaptative laboratory evolution to a high light environment. J Appl Phycol 35, 1009–1021 (2023). https://doi.org/10.1007/s10811-023-02944-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02944-x

Keywords

Navigation