Skip to main content
Log in

Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Light is essential for all photosynthetic organisms while an excess of it can lead to damage mainly the photosystems of the thylakoid membrane. In this study, we have grown Chlamydomonas reinhardtii cells in different intensities of high light to understand the photosynthetic process with reference to thylakoid membrane organization during its acclimation process. We observed, the cells acclimatized to long-term response to high light intensities of 500 and 1000 µmol m−2 s−1 with faster growth and more biomass production when compared to cells at 50 µmol m−2 s−1 light intensity. The ratio of Chl a/b was marginally decreased from the mid-log phase of growth at the high light intensity. Increased level of zeaxanthin and LHCSR3 expression was also found which is known to play a key role in non-photochemical quenching (NPQ) mechanism for photoprotection. Changes in photosynthetic parameters were observed such as increased levels of NPQ, marginal change in electron transport rate, and many other changes which demonstrate that cells were acclimatized to high light which is an adaptive mechanism. Surprisingly, PSII core protein contents have marginally reduced when compared to peripherally arranged LHCII in high light-grown cells. Further, we also observed alterations in stromal subunits of PSI and low levels of PsaG, probably due to disruption of PSI assembly and also its association with LHCI. During the process of acclimation, changes in thylakoid organization occurred in high light intensities with reduction of PSII supercomplex formation. This change may be attributed to alteration of protein–pigment complexes which are in agreement with circular dichoism spectra of high light-acclimatized cells, where decrease in the magnitude of psi-type bands indicates changes in ordered arrays of PSII–LHCII supercomplexes. These results specify that acclimation to high light stress through NPQ mechanism by expression of LHCSR3 and also observed changes in thylakoid protein profile/supercomplex formation lead to low photochemical yield and more biomass production in high light condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allorent G, Tokutsu R, Roach V, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C (2013) A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell 25:545–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958

    Article  CAS  PubMed  Google Scholar 

  • Ballottari M, Girardon J, Dall’Osto L, Bassi R (2012) Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. Biochim Biophys Acta 1817:143–157

    Article  CAS  PubMed  Google Scholar 

  • Belgio E, Kapitonova E, Chmeliov J, Duffy CD, Ungerer P, Valkunas L, Ruban AV (2014) Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat Commun 5:4433

    Article  CAS  PubMed  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, De Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Kouřil R, Kereïche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Osto L, Lico C, Alric J, Giuliano G, Havaux M, Bassi R (2006) Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol 6:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dall’Osto L, Cazzaniga S, Havaux M, Bassi R (2010) Enhanced photoprotection by protein-bound vs free xanthophyll pools: a comparative analysis of chlorophyll b and xanthophyll biosynthesis mutants. Mol Plant 3:576–593

    Article  CAS  PubMed  Google Scholar 

  • Derks A, Schaven K, Bruce D (2015) Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change. Biochim Biophys Acta 1847:468–485

    Article  CAS  PubMed  Google Scholar 

  • Diaz M, de Haro V, Munoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ 30:1578–1585

    Article  CAS  PubMed  Google Scholar 

  • Drop B, Webber-Birungi M, Fusetti F, Kouril R, Redding KE, Boekema EJ, Croce R (2011) Photosystem I of Chlamydomonas reinhardtii contains nine light-harvesting complexes (Lhca) located on one side of the core. J Biol Chem 286:44878–44887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drop B, Yadav K, Boekema EJ, Croce R (2014) Consequences of state transitions on the structural and functional organization of photosystem I in the green alga Chlamydomonas reinhardtii. Plant J 78:181–191

    Article  CAS  PubMed  Google Scholar 

  • Durnford DG, Price JA, McKim SM, Sarchfield ML (2003) Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol Plant 118:193–205

    Article  CAS  Google Scholar 

  • Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14:1801–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer N, Sétif P, Rochaix JD (1997) Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: preferential reduction of FB at low temperature is not accompanied by altered electron flow from photosystem I to ferredoxin. Biochemistry 36:93–102

    Article  CAS  PubMed  Google Scholar 

  • Fischer N, Hippler M, Sétif P, Jacquot JP, Rochaix JD (1998) The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin. EMBO J 17:849–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garab G, Van Amerongen H (2009) Linear dichroism and circular dichroism in photosynthesis research. Photosynth Res 101:135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govindjee PG (1971) Chlorophyll fluorescence and photosynthesis: fluorescence transients. Photophysiology 6:1–46

    Google Scholar 

  • Ibáñez H, Ballester A, Muñoz R, Quiles MJ (2010) Chlororespiration and tolerance to drought, heat and high illumination. J Plant Physiol 167:732–738

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Sakurai H, Hiyama T (1986) Photoinactivation sites of photosystem I in isolated chloroplasts. Plant Cell physiol 27:961–968

    CAS  Google Scholar 

  • Ivanov B, Kozuleva M, Mubarakshina M (2012) Oxygen metabolism in chloroplast. Cell metabolism-cell homeostasis and stress response, InTech 39–72

  • Iwai M, Takahashi Y, Minagawa J (2008) Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. Plant Cell 20:2177–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Akimoto S, Tokutsu R, Yokono M, Minagawa J (2017) Fluorescence lifetime analyses reveal how the high light-responsive protein LHCSR3 transforms PSII light-harvesting complexes into an energy-dissipative state. J Biol Chem 292:18951–18960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl Notes 1:201–247

    Google Scholar 

  • Kodru S, Malavath T, Devadasu E, Nellaepalli S, Stirbet A, Subramanyam R, Govindjee (2015) The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynth Res 125:219–231

    Article  CAS  PubMed  Google Scholar 

  • Kouril R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419

    Article  CAS  PubMed  Google Scholar 

  • Lunde C, Jensen PE, Haldrup A, Knoetzel J, Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408:613–615

    Article  CAS  PubMed  Google Scholar 

  • Madireddi SK, Nama S, Devadasu ER, Subramanyam R (2014) Photosynthetic membrane organization and role of state transition in cyt, cpII, stt7 and npq mutants of Chlamydomonas reinhardtii. J Photochem Photobiol B 137:77–83

    Article  CAS  PubMed  Google Scholar 

  • Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K (2009) Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Funct Plant Biol 36:20–36

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mettler T, Muhlhaus T, Hemme D, Schottler MA, Rupprecht J, Idoine A, Veyel D, Pal SK, Yaneva-Roder L, Winck FV (2014) Systems analysis of the response of photosynthesis, metabolism, and growth to an increase in irradiance in the photosynthetic model organism Chlamydomonas reinhardtii. Plant Cell 26:2310–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minagawa J, Takahashi Y (2004) Structure, function and assembly of photosystem II and its light-harvesting proteins. Photosynth Res 82:241–263

    Article  CAS  PubMed  Google Scholar 

  • Mubarakshina M, Khorobrykh S, Ivanov B (2006) Oxygen reduction in chloroplast thylakoids results in production of hydrogen peroxide inside the membrane. Biochim Biophys Acta 1757:1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Unnep R, Zsiros O, Tokutsu R, Takizawa K, Porcar L, Moyet L, Petroutsos D, Garab G, Finazzi G (2014) Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo. Proc Natl Acad Sci USA 111:5042–5047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nama S, Madireddi SK, Devadasu ER, Subramanyam R (2015) High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. J Photochem Photobiol B 152:367–376

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa S, Onishi T, Takahashi Y (2010) Identification and characterization of an assembly intermediate subcomplex of photosystem I in the green alga Chlamydomonas reinhardtii. J Biol Chem 285:20072–20079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papageorgiou G (1975) Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In: Govindjee (ed) Bioenergetics of photosynthesis. Academic Press, New York, pp 320–366

    Google Scholar 

  • Passarini F, Wientjes E, Hienerwadel R, Croce R (2009) Molecular basis of light harvesting and photoprotection in CP24 unique features of the most recent antenna complex. J Biol Chem 284:29536–29546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518

    Article  CAS  PubMed  Google Scholar 

  • Perozeni F, Stella GR, Ballottari M (2018) LHCSR expression under HSP70/RBCS2 promoter as a strategy to increase productivity in microalgae. Int J Mol Sci 19:155

    Article  CAS  PubMed Central  Google Scholar 

  • Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S (2014) The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26:3646–3660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rajagopal S, Joly D, Gauthier A, Beauregard M, Carpentier R (2005) Protective effect of active oxygen scavengers on protein degradation and photochemical function in photosystem I submembrane fractions during light stress. FEBS J 272:892–902

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CD (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Semchonok DA, Yadav KS, Xu P, Drop B, Croce R, Boekema EJ (2017) Interaction between the photoprotective protein LHCSR3 and C2S2 photosystem II supercomplex in Chlamydomonas reinhardtii. Biochim Biophys Acta 1858:379–385

    Article  CAS  Google Scholar 

  • Stirbet A, Riznichenko GY, Rubin A (2014) Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry 79:291–323

    CAS  PubMed  Google Scholar 

  • Strasser RJ, Srivastava A (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Subramanyam R, Jolley C, Brune DC, Fromme P, Webber AN (2006) Characterization of a novel photosystem I–LHCI supercomplex isolated from Chlamydomonas reinhardtii under anaerobic (state II) conditions. FEBS lett 580:233–238

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam R, Jolley C, Thangaraj B, Nellaepalli S, Webber AN, Fromme P (2010) Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions. Planta 231:913–922

    Article  CAS  PubMed  Google Scholar 

  • Suorsa M, Jarvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjarvi S, Paakkarinen V, Tikkanen M, Jansson S (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. Plant Cell 24:2934–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suorsa M, Rantala M, Mamedov F, Lespinasse M, Trotta A, Grieco M, Vuorio E, Tikkanen M, Jarvi S, Aro EM (2015) Light acclimation involves dynamic re-organization of the pigment–protein megacomplexes in non-appressed thylakoid domains. Plant J 84:360–373

    Article  CAS  PubMed  Google Scholar 

  • Tjus SE, Moller BL, Scheller HV (1999) Photoinhibition of photosystem I damages both reaction centre proteins PSI-A and PSI-B and acceptor-side located small photosystem I polypeptides. Photosynth Res 60:75–86

    Article  CAS  Google Scholar 

  • Tóth TN, Rai N, Solymosi K, Zsiros O, Schröder WP, Garab G, Van Amerongen H, Horton P, Kovács L (2016) Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim Biophys Acta 1857:1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Trebitsh T, Danon A (2001) Translation of chloroplast psbA mRNA is regulated by signals initiated by both photosystems II and I. Proc Natl Acad Sci USA 98:12289–12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Oort B, Roy LM, Xu P, Lu Y, Karcher D, Bock R, Croce R (2018) Revisiting the role of xanthophylls in non-photochemical quenching. J Phys Chem Lett 9:346–352

    Article  CAS  PubMed  Google Scholar 

  • Wehner A, Graßes T, Jahns P (2006) De-epoxidation of violaxanthin in the minor antenna proteins of photosystem II, LHCB4, LHCB5, and LHCB6. J Biol Chem 281:21924–21933

    Article  CAS  PubMed  Google Scholar 

  • Wientjes E, Van Amerongen H, Croce R (2013a) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426

    Article  CAS  PubMed  Google Scholar 

  • Wientjes E, Van Amerongen H, Croce R (2013b) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 117:11200–11208

    Article  CAS  PubMed  Google Scholar 

  • Yadavalli V, Malleda C, Subramanyam R (2011a) Protein–protein interactions by molecular modeling and biochemical characterization of PSI-LHCI supercomplexes from Chlamydomonas reinhardtii. Mol Bio Syst 7:3143–3151

    CAS  Google Scholar 

  • Yadavalli V, Nellaepalli S, Subramanyam R (2011b) Proteomic analysis of thylakoid membranes. Methods Mol Biol 684:159–170

    Article  CAS  PubMed  Google Scholar 

  • Yadavalli V, Jolley CC, Malleda C, Thangaraj B, Fromme P, Subramanyam R (2012) Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii. PLoS ONE 7:e35084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Chen T, Feng B, Zhang C, Peng S, Zhang X, Fu G, Tao L (2017) Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. Front Plant Sci 7:1968

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.S was supported by the Department of Biotechnology (BT/PR14964/BPA/118/137/2015), Council of Scientific and Industrial Research (No. 38 (1381)/14/EMR-II) and DST-FIST, UGC-SAP, Govt. of India, for financial support. SN acknowledged CSIR for fellowship (JRF/SRF). We thank Dr. Kizu Zamir, Department of Plant Sciences, University of Hyderabad for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajagopal Subramanyam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 643 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nama, S., Madireddi, S.K., Yadav, R.M. et al. Non-photochemical quenching-dependent acclimation and thylakoid organization of Chlamydomonas reinhardtii to high light stress. Photosynth Res 139, 387–400 (2019). https://doi.org/10.1007/s11120-018-0551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-018-0551-7

Keywords

Navigation