Skip to main content
Log in

The alga Bracteacoccus bullatus (Chlorophyceae) isolated from snow, as a source of oil comprising essential unsaturated fatty acids and carotenoids

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A unicellular alga isolated from snow in the Sierra Nevada Mountains (Spain) was characterised using a polyphasic approach. Comparative analysis of ITS2 rDNA secondary structures identified the new culture (CCALA 1120 Cepák and Lukavský Nova Hedwigia 94:163–173, 2012) as being conspecific with Bracteacoccus bullatus (Chlorophyceae). For the first time this study documented sexual reproduction as the pairing of gametes and also an-isogamy. Strain CCALA 1120 had a temperature optimum of growth about 21 °C and an irradiance optimum above 160 µmol photons m−2 s−1. It was cultivated in pilot-plant scale, using an open thin-layer photobioreactor in a greenhouse with only partial temperature control. After harvest, a high proportion of fatty acids was found (15.3% of dry mass) with linoleic (18:2ω-6) 18.3% and α-linolenic acids (18:3ω-3) 17.4% being the most abundant. Monounsaturated fatty acids accounted for about 30% with oleic (18:1ω-9) and vaccenic acids (18:1 ω-7) as the most prominent. The ratio of PUFA ω-6/ω-3 was 1:1.16, i.e. near to the ideal ratio of 1:1, as recommended by the World Health Organization. Biomass production was 2.67 g m–2 day−1 of dry weight, i.e. 0.2 g L−1 day−1. At the end of growth phase, total carotenoids made up 10.1 mg L−1. These results indicate that B. bullatus is suitable for production of a vegetable oil at lower temperatures (12–18 °C) and comprising a high content of unsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Borowitzka M (2013) High-value products from microalgae - their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Broady PA (1984) Taxonomic and ecological investigations of algae on steam-warmed soil on Mt. Erebus, Ross Island, Antarctica. Phycologia 23:257–271

    Article  Google Scholar 

  • Cepák V, Lukavský J (2012) Cryoseston in the Sierra Nevada mountains (Spain). Nova Hedwigia 94:163–173

    Article  Google Scholar 

  • Chekanov K, Fedorenko T, Kublanovskaya A, Litvinov D, Lobakova E (2019) Diversity of carotenogenic microalgae in the White Sea polar region. FEMS Microbiol Ecol 96:183

    Article  Google Scholar 

  • Chekanov K, Litvinov D, Fedorenko T, Chivkunova O, Lobakova E (2021) Combined production of astaxanthin and _β-carotene in a new strain of the microalga Bracteacoccus aggregatus BM5/15 (IPPAS C-2045) cultivated in photobioreactor. Biology 10:643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekanov K, Shibzukhova K, Lobakova E, Solovchenko A (2022) Differential responses to UV-A stress recorded in carotenogenic microalgae Haematococcus rubicundus, Bracteacoccus aggregatus, and Deasonia sp. Plants 11:1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherif A, Dubacq J, Mache R, Oursel A, Tremolieres A (1975) Biosynthesis of α-linolenic acid by desaturation of oleic and linoleic acids in several organs of higher and lower plants and in algae. Phytochemistry 14:703–706

    Article  CAS  Google Scholar 

  • Coleman AW (2009) Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol Phylogenet Evol 50:197–203

    Article  CAS  PubMed  Google Scholar 

  • Cunnane SC (2003) Problems with essential fatty acids: time for a new paradigm? Prog Lipid Res 42:544–568

    Article  CAS  PubMed  Google Scholar 

  • Darty K, Denise A, Ponty Y (2009) VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25:1974–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dell I (2015). Dell Statistica (data analysis software system), version 13. software.dell.com, .

  • Doucha J, Lívanský K (1996) Způsob venkovní tenkovrstevné kultivace řas a sinic a bioreactor k provádění tohoto způsobu [The way of outdoor thin-layer cultivation of algae and blue-green algae and bioreactor for carrying out this method]. CZ patent 3266–96, CZ 9966U1

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Fučíková K, Flechtner VR, Lewis LA (2012) Revision of the genus Bracteacoccus Tereg (Chlorophyceae, Chlorophyta) based on a phylogenetic approach. Nova Hedwigia 96:15–59

    Article  Google Scholar 

  • Gärtner G (1985) The culture collection of algae at the Botanical Institute of the University at Innsbruck (Austria). Ber nat-med Verein Innsbruck 72:33–52

    Google Scholar 

  • Heukelem LVan, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31-49

  • Hoham R, Remias D (2020) Snow and glacial algae: a review. J Phycol 56:264–281

    Article  PubMed  Google Scholar 

  • Hornung RL, Hanzely L, Lynch DL (1977) Occurrence of microbodies in the green alga Bracteacoccus cinnabarinus grown heterotrophically. Protoplasma 93:135–145

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Runquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics Applications Note 17:754–755

    CAS  Google Scholar 

  • Isaac AS (2020) An alternative for the future: growth and lipid production in extremophilic algae. Honors Theses. 59, Assumption University

  • Kol E, Flint EA (1968) Algae in green ice from Balleny islands. Antarctica N Z J Bot 6:249–261

    Article  Google Scholar 

  • Krienitz L, Wirth M (2006) The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnologica 36:204–210

    Article  CAS  Google Scholar 

  • Kvíderová J, Lukavský J (2005) The comparison of ecological characteristics of Stichococcus (Chlorophyta) strains isolated from polar and temperate regions. Arch Hydrobiol Algol Stud 118:127–140

    Google Scholar 

  • Kvíderová J, Shukla SP, Pushparaj B, Elster J (2017) Perspectives of low-temperature biomass production of polar microalgae and biotechnology expansion into high latitudes. In: Margesin R (ed) Psychrophiles: From Biodiversity to Biotechnology. Springer, Cham, pp 585–600

    Chapter  Google Scholar 

  • Lang I, Hodač L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leya T (2020) The CCCryo Culture Collection of Cryophilic Algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites. Appl Phycol 1:1–22

    Google Scholar 

  • Lichtenthaler H, Wellburn A (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • López G, Yate C, Ramos FA, Cala MP, Restrepo S, Baena S. (2019): Production of Polyunsaturated Fatty Acids and Lipids from Autotrophic, Mixotrophic and Heterotrophic cultivation of Galdieria sp. strain USBA-GBX-832. Sci Rep 9: 10791

  • Lukavský J, Cepák V, Procházková L, Řezanka T (2018) Produkční kmen řasy Bracteacoccus bullatus pro produkci olejů s obsahem esenciálních nenasycených mastných kyselin, způsob produkce těchto olejů a použití tohoto kmene pro průmyslovou produkci těchto olejů. [The production strain of algae Bracteacoccus bullatus for the production of oils with a content of essential unsaturated fatty acids, method of production of these oils and the use of this strain for the industrial production of these oils]. CZ patent 3266–96, CZ 9966U1

  • Malik S, Ashraf MUF, Shahid A, Javed MR, Khan AZ, Usman M, Ashraf GA (2022) Characterization of a newly isolated self-flocculating microalga Bracteacoccus pseudominor BERC09 and its evaluation as a candidate for a multiproduct algal biorefinery. Chemosphere, 304: 135346.

  • Maltsev Y, Maltseva IA, Maltseva SYu Kulikovskiy MS (2020) Biotechnological potential of a new strain of Bracteacoccus bullatus (Sphaeropleales, Chlorophyta) as a promising producer of omega-6 polyunsaturated fatty acids. Russ J Plant Physiol 67:185–193

  • Mamaeva A, Namsaraev Z, MaltsevY GE, Kulikovskiy M, Petrushkina M, Filimonova A, Sorokin B, Zotko N, Vinokurov V, Kopitsyn D, Petrova D, Novikov A, Kuzmin D (2018) Simultaneous increase in cellular content and volumetric concentration of lipids in Bracteacoccus bullatus cultivated at reduced nitrogen and phosphorus concentrations. J Appl Phycol 30:2237–2246

    Article  CAS  Google Scholar 

  • Matsuzaki R, Nozaki H, Takeuchi N, Hara Y, Kawachi M (2019) Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov. PLoS ONE 14(1): e0210986

  • Minyuk GS, Chelebieva ES, Chubchikova IN (2014) Secondary carotenogenesis of the green microalga Bracteococcus minor (Chodat) Petrová (Chlorophyta) in a two-stage culture. Internat J Algae 15:354–368

    Article  Google Scholar 

  • Nakamura MT, Nara TY (2003) Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot Essent Fatty Acids 68:145–150

    Article  CAS  Google Scholar 

  • Nedbalová L, Mihál M, Kvíderová J, Procházková L, Řezanka T, Elster J (2017) Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Extremophiles 21:187–200

    Article  PubMed  Google Scholar 

  • Neustupa J, Škaloud P (2008) Diversity of subaerial algae and cyanobacteria on tree bark in tropical mountain habitats. Biologia 63:806–812

    Article  Google Scholar 

  • Papapolymerou G, Karayannis V, Gougoulias N, Kantas D, Papadopoulos S, Spiliotis X (2018) Growing Chlorella vulgaris into bioreactors set in solar greenhouse, towards biofuel: Nutrient composition. J Appl Biotechnol Bioeng 5:102–106

    Google Scholar 

  • Patova EN, Dorokhova MF (2008) Green algae in tundra soils affected by coal mine pollutions. Biologia 63:831–835

    Article  Google Scholar 

  • Piligaev AV, Sorokina KN, Bryanskaya AV, Peltek SE, Kolchanov NA, Parmon VN (2015) Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Res 12:368–376

    Article  Google Scholar 

  • Posada D (2008) jModelTest: Phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Přibyl P (2013) Light is a crucial signal for zoosporogenesis and gametogenesis in some green microalgae. Eur J Phycol 48:106–115

    Article  Google Scholar 

  • Procházková L, Remias D, Řezanka T, Nedbalová L (2018) Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re–examination of a snow alga from the High Tatra Mountains (Slovakia). Fottea 18:1–18

    Article  Google Scholar 

  • Rajesh K, Rohit MV, Mohan SV (2017) Microalgae-based carotenoids production. In: Rastogi RP, Madamwar D, Pandey A (Eds) Algal green chemistry: recent progress in biotechnology. Elsevier, Amsterdam pp 139–147

  • Řezanka T, Lukavský J, Nedbalová L, Vítová M (2015) Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus. – Phytochemistry 110:37–45

  • Řezanka T, Nedbalová L, Lukavský J, Střížek A, Sigler K (2017) Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in a low-temperature environment. Algal Res 22:160–165

    Article  Google Scholar 

  • Řezanka T, Lukavský J, Nedbalová L (2016) Produkční kmen řasy Monoraphidium sp. pro produkci olejů s obsahem polynenasycených mastných kyselin, způsob produkce těchto olejů a použití tohoto produkčního kmene pro průmyslovou výrobu těchto olejů. [Production strain of algae Monoraphidium sp. for the production of oils containing polyunsaturated fatty acids, a process for producing these oils and the use of the production strain for the industrial production of these oils]. CZ patent 306,738

  • Samolov E, Baumann K, Büdel B, Jung P, Leinweber P (2020) Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach. Microorganisms 8:1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibel PN, Müller T, Dandekar T, Schultz J, Wolf M (2006) 4SALE–a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7:498

    Article  PubMed  PubMed Central  Google Scholar 

  • Seibel PN, Müller T, Dandekar T, Wolf M (2008) Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE. BMC Res Notes 1:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Shukla SP, Kvíderová J, Adamec L, Elster J (2020) Ecophysiological features of polar soil unicellular microalgae. J Phycol 56:481–495

    Article  PubMed  Google Scholar 

  • Siegler H, Valerius O, Ischebeck T et al (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biol 17:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Stibal M, Šabacká M, Kaštovská K (2006) Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecol 52:644–654

    Article  Google Scholar 

  • Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, USA, p 496

    Google Scholar 

  • Trentin R, Negrisolo E, Moschin E, Veronese D, Cecchetto M, Moro I (2022) Microglena antarctica sp. nov. a new Antarctic green alga from Inexpressible Island (Terra Nova Bay, Ross Sea) revealed through an integrative approach. Diversity 14:337

  • Venancio HC, Cella H, Lopes RG, Derner RB (2020) Surface-to volume ratio influence on growth of Scenedesmus obliquus in a thin layer cascade system. J Appl Phycol 32:821–829

    Article  CAS  Google Scholar 

  • Venter A, Siebert S, Rajakaruna N, Barnard S, Levanets A, Ismail A et al (2018) Biological crusts of serpentine and non-serpentine soils from the Barberton Greenstone Belt of South Africa. Ecol Res 33:629–640

    Article  CAS  Google Scholar 

  • Weylandt KH, Serini S, Chen YQ, Su HM, Lim K, Cittadini A, Calviello G (2015) Omega-3 polyunsaturated fatty acids: the way forward in times of mixed evidence. BioMed Res Internat 2015:143109

  • Wolf M, Chen S, Song J, Ankenbrand M, Müller T (2013) Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomicvariability in ITS2 sequences - A proof of concept. PLoS ONE 8:66726

    Article  Google Scholar 

  • Xiao Y, Zhang J, Cui J, Feng Y, Cui Q (2013) Metabolic profiles of Nannochloropsis oceanica under nitrogen-deficiency stress. Bioresource Technol 130:731–738

    Article  CAS  Google Scholar 

  • Yabuzaki J (2017) Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database (Oxford) 2017(1):bax004

  • Zachleder V, Šetlík I (1982) Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol Plantarum 24:341–353

    Article  CAS  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin

Download references

Acknowledgements

We thank doc. V. Cepák for collecting samples, H. Brabcová, ing. S. Pumpr and J. Hinterholzinger for technical support, last, but not least Prof. J.D.Brooker for language dressing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J. Lukavský designed this study, isolated the strain, carried out the light microscopy, carried out the three large-scale cultivations and lyophylization processing. J. Kvíderová was responsible for statistical analysis and cultivation in crossed gradients, J. Kopecký performed the pigment analysis, D. Kubáč harvested the pilot-plant cultivation, L. Procházková sequenced the strain and performed the phylogenetic analysis and ITS2 rRNA secondary structure prediction, T. Řezanka carried out fatty acid methyl ester analysis. J. Lukavský, J. Kvíderová, L. Procházková and T. Řezanka wrote the manuscript, J. Kopecký, D. Kubáč, T. Řezanka contributed with their relevant parts. All authors discussed the results.

Corresponding author

Correspondence to J. Lukavský.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukavský, J., Kopecký, J., Kubáč, D. et al. The alga Bracteacoccus bullatus (Chlorophyceae) isolated from snow, as a source of oil comprising essential unsaturated fatty acids and carotenoids. J Appl Phycol 35, 649–660 (2023). https://doi.org/10.1007/s10811-023-02916-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-023-02916-1

Keywords

Navigation