Skip to main content
Log in

Simultaneous increase in cellular content and volumetric concentration of lipids in Bracteacoccus bullatus cultivated at reduced nitrogen and phosphorus concentrations

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Manipulation of the nutrient concentration is an inexpensive and efficient method for increasing lipid and TAG accumulation in algal cells. However, high volumetric production requires finding a proper balance between the decrease of biomass production and the increase in the total lipid content. We isolated a strain of green microalga Bracteacoccus bullatus and increased its lipid content from 17 to 59% of biomass dry weight by manipulating of nitrogen and phosphorus content in the medium. The 10-fold reduction of the nitrogen and phosphorus concentration in the medium was the most efficient method of the lipid induction compared to nutrient deplete and high nutrient conditions. The oleic (48–64% mass of total fatty acids) and linoleic (14–24% mass of total fatty acids) acids dominated in the fatty acid profile, thus making this strain a suitable candidate for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Bona F, Capuzzo A, Franchino M, Maffei ME (2014) Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans. Algal Res 5:1–6

    Article  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  PubMed  CAS  Google Scholar 

  • Broady PA (1984) Taxonomic and ecological investigations of algae on steam-warmed soil on Mt. Erebus, Ross Island, Antarctica. Phycologia 23:257–271

    Article  Google Scholar 

  • Byun Y, Han K (2009) PseudoViewer3: generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics 25:1435–1437

    Article  PubMed  CAS  Google Scholar 

  • Caisová L, Marin B, Melkonian M (2013) A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 164:482–496

    Article  PubMed  CAS  Google Scholar 

  • Challagulla V, Fabbro L, Nayar S (2015) Biomass, lipid productivity and fatty acid composition of fresh water microalga Rhopalosolen saccatus cultivated under phosphorus limited conditions. Algal Res 8:69–75

    Article  Google Scholar 

  • Chen W, Zhang CH, Song L, Sommerfeld M, Hu Q (2009) A high throughput Nile Red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods 77:41–47

    Article  PubMed  CAS  Google Scholar 

  • Coleman AW (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends Genet 19:370–375

    Article  PubMed  CAS  Google Scholar 

  • Dodds ED, McCoy MR, Rea LD, Kennish JM (2005) Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry. Lipids 40:419–428

    Article  PubMed  CAS  Google Scholar 

  • Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl Microbiol Biotechnol 98:4805–4816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fučíková K, Flechtner VR, Lewis LA (2012) Revision of the genus Bracteacoccus Tereg (Chlorophyceae, Chlorophyta) based on a phylogenetic approach. Nova Hedwigia 96:15–59

    Article  Google Scholar 

  • Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B (2016) Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol J 14:1649–1660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guillard RR, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14

    CAS  Google Scholar 

  • Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 17–36

    Chapter  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keller A, Schleicher T, Förster F, Ruderisch B, Dandekar T, Müller T, Wolf M (2008) ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales). BMC Evol Biol 8:218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  PubMed  CAS  Google Scholar 

  • Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, Müller T, Wolf M, Schultz J (2010) The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Res 38:D275–D279

    Article  PubMed  CAS  Google Scholar 

  • Kumar MS, Ramesh A, Nagalingam B (2003) An experimental comparison of methods to use methanol and Jatropha oil in a compression ignition engine. Biomass Bioenergy 25:309–318

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129

    Article  PubMed  CAS  Google Scholar 

  • Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804

    Article  PubMed  CAS  Google Scholar 

  • Maltsev YI, Konovalenko TV, Barantsova IA, Maltseva IA, Maltseva KI (2017a) Prospects of using algae in biofuel production. Regul Mech Biosyst 8:455–460

    Article  Google Scholar 

  • Maltsev YI, Pakhomov AY, Maltseva IA (2017b) Specific features of algal communities in forest litter of forest biogeocenoses of the steppe zone. Contemp Probl Ecol 10:71–76

    Article  Google Scholar 

  • Maltseva IA, Maltsev YI, Solonenko AN (2017) Soil algae of the oak groves of the steppe zone of Ukraine. Int J Algae 19:215–226

    Article  Google Scholar 

  • Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  PubMed  CAS  Google Scholar 

  • Mansour MP, Frampton DMF, Nichols PD, Volkman JK, Blackburn SI (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24–C28 polyunsaturated fatty acids. J Appl Phycol 17:287–300

    Article  CAS  Google Scholar 

  • Minyuk GS, Chelebieva ES, Chubchikova IN (2015) Secondary carotenogenesis of the green microalga Bracteacoccus minor (Chlorophyta) in a two-stage culture. Int J Algae 25:21–34

    Google Scholar 

  • Patova EN, Dorokhova MF (2008) Green algae in tundra soils affected by coal mine pollutions. Biologia 63:831–835

    Article  Google Scholar 

  • Posada D (2006) Modeltest server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:700–703

    Article  Google Scholar 

  • Ratha SK, Babu S, Renuka N, Prasanna R, Prasad RBN, Saxena AK (2012) Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae. J Basic Microbiol 53:440–450

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Scherbina VV, Maltseva IA, Solonenko AN (2014) Peculiarities of postpyrogene development of algae in steppe biocenoses at Askania Nova Biospheric national park. Contemp Probl Ecol 7:187–191

    Article  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 57:758–771

    Article  PubMed  Google Scholar 

  • Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini М, Mirzaei HH, Mirzajanzadeh M, Shafaroudi SM, Bakhtiari S (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan C, Bai FW, Zhao XQ (2013) Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga Nannochloropsis oceanica DUT01. Biochem Eng J 78:32–38

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A guide to methods and applications. Academic Press, New York, pp 315–322

  • Zhang S, Liu PH, Yang X, Hao ZD, Zhang L, Luo N, Shi J (2014) Isolation and identification by 18S rDNA sequence of high lipid potential microalgal species for fuel production in Hainan Dao. Biomass Bioenergy 66:197–203

    Article  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

All authors contributed equally to this work. In general, LLC “Solixant” is interested in the potential of microalgae as an alternative sustainable source of lipids. This does not alter the authors’ adherence to the Journal of Applied Phycology policies on sharing data and materials. This work was supported by Ministry of Education and Science of the Russian Federation (project 14.574.21.0137, identifier RFMEFI57417X0137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorigto Namsaraev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamaeva, A., Namsaraev, Z., Maltsev, Y. et al. Simultaneous increase in cellular content and volumetric concentration of lipids in Bracteacoccus bullatus cultivated at reduced nitrogen and phosphorus concentrations. J Appl Phycol 30, 2237–2246 (2018). https://doi.org/10.1007/s10811-018-1471-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1471-9

Keywords

Navigation