Skip to main content
Log in

Can luminescent solar concentrators increase microalgal growth on anaerobically digested food effluent?

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Increasing microalgal biomass productivity and enhancing nutrient removal rates are critical when growing microalgae in wastewater. In most cases, the effluents such as anaerobically digested food effluent (ADFE) are very turbid. Using such effluents as a medium for an algal culture would leave the culture with high turbidity resulting in photo-limitation of the algal culture. Light-diffusing systems can be used to overcome the light limitation in microalgal cultures. In this study, red luminescent solar concentrators were used to shift the sunlight into the desired wavelength and deliver it into the depth of cultures of an outdoor microalgal consortium cultivated in ADFE in paddlewheel-driven raceway ponds. Biomass productivity and specific growth rate of cultures grown using red luminescent solar concentrators (LSCs) were 61% and 59% higher than those in control cultures. The nitrogen assimilation rate of biomass under red LSCs was 1.8-fold higher than that in the control. Further, the lipid content of the cultures under red LSCs (490 mg lipid g−1 biomass) was 30% higher than that of the control. The results of this study showed that using red LSCs can improve microalga growth on ADFE when paddlewheel raceway ponds are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abu-Rezq TS, Al-Hooti S, Jacob D, Al-Shamali M, Ahmed A, Ahmed N (2010) Induction and extraction of β-carotene from the locally isolated Dunaliella salina. J Algal Biomass Utln 1:58–83

    Google Scholar 

  • An J-Y, Sim S-J, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • Ayre JM, Moheimani NR, Borowitzka MA (2017) Growth of microalgae on undiluted anaerobic digestate of piggery effluent with high ammonium concentrations. Algal Res 24:218–226

    Article  Google Scholar 

  • Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Betenbaugh MJ, Bouwer EJ (2015) Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 99:6139–6154

    Article  CAS  Google Scholar 

  • Borowitzka MA, Vonshak A (2017) Scaling up microalgal cultures to commercial scale. Eur J Phycol 52:407–418

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Corrado C, Leow SW, Osborn M, Chan E, Balaban B, Carter SA (2013) Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design. Sol Energy Mater Sol 111:74–81

    Article  CAS  Google Scholar 

  • Debije MG, Verbunt PP (2012) Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv Energy Mater 2:12–35

    Article  CAS  Google Scholar 

  • Delrue F, Álvarez-Díaz PD, Fon-Sing S, Fleury G, Sassi J-F (2016) The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm. Energies 9:132

    Article  Google Scholar 

  • Eustance E, Wray JT, Badvipour S, Sommerfeld MR (2016) The effects of cultivation depth, areal density, and nutrient level on lipid accumulation of Scenedesmus acutus in outdoor raceway ponds. J Appl Phycol 28:1459–1469

    Article  CAS  Google Scholar 

  • Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manag 45:32–41

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 17–36

    Chapter  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 265–284

    Chapter  Google Scholar 

  • Nwoba EG, Ayre JM, Moheimani NR, Ubi BE, Ogbonna JC (2016) Growth comparison of microalgae in tubular photobioreactor and open pond for treating anaerobic digestion piggery effluent. Algal Res 17:268–276

    Article  Google Scholar 

  • Nwoba EG, Mickan BS, Moheimani NR (2019) Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. J Appl Phycol 31:3545–3556

    Article  CAS  Google Scholar 

  • Park J, Jin H-F, Lim B-R, Park K-Y, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour Technol 101:8649–8657

    Article  CAS  Google Scholar 

  • Raeisossadati M, Moheimani NR, Parlevliet D (2019a) Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production. Renew Sust Energ Rev 101:47–59

    Article  Google Scholar 

  • Raeisossadati M, Moheimani NR, Parlevliet D (2019b) Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds. Bioresour Technol 291:121801

    Article  CAS  Google Scholar 

  • Raeisossadati M, Vadiveloo A, Bahri PA, Parlevliet D, Moheimani NR (2019c) Treating anaerobically digested piggery effluent (ADPE) using microalgae in thin layer reactor and raceway pond. J Appl Phycol 31:2311–2319

    Article  CAS  Google Scholar 

  • Raeisossadati M, Moheimani NR, Parlevliet D (2020) Red luminescent solar concentrators to enhance Scenedesmus sp. biomass productivity. Algal Res 45:101771

    Article  Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:230A–2221A

  • Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edition. Wiley, London

    Google Scholar 

  • Thassitou PK, Arvanitoyannis IS (2001) Bioremediation: a novel approach to food waste management. Trends Food Sci Technol 12:185–196

    Article  CAS  Google Scholar 

  • Vidyashankar S, VenuGopal KS, Chauhan VS, Muthukumar SP, Sarada R (2015) Characterisation of defatted Scenedesmus dimorphus algal biomass as animal feed. J Appl Phycol 27:1871–1879

    Article  CAS  Google Scholar 

  • Vonshak A, Laorawat S, Bunnag B, Tanticharoen M (2014) The effect of light availability on the photosynthetic activity and productivity of outdoor cultures of Arthrospira platensis (Spirulina). J Appl Phycol 26:1309–1315

    Article  CAS  Google Scholar 

  • Zarezadeh S, Moheimani NR, Jenkins SN, Hülsen T, Riahi H, Mickan BS (2019) Microalgae and phototrophic purple bacteria for nutrient recovery from agri-industrial effluents: influences on plant growth, rhizosphere bacteria, and putative carbon- and nitrogen-cycling genes. Front Plant Sci 10

  • Zhang R, El-Mashad HM, Hartman K, Wang F, Liu G, Choate C, Gamble P (2007) Characterization of food waste as feedstock for anaerobic digestion. Bioresour Technol 98:929–935

    Article  CAS  Google Scholar 

  • Zimmo OR, van der Steen NP, Gijzen HJ (2003) Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Res 37:4587–4594

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Richgro Garden Products, WA, for providing anaerobically digested food effluent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Reza Moheimani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeisossadati, M., Moheimani, N.R. Can luminescent solar concentrators increase microalgal growth on anaerobically digested food effluent?. J Appl Phycol 32, 3703–3710 (2020). https://doi.org/10.1007/s10811-020-02278-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02278-y

Keywords

Navigation