Skip to main content
Log in

Medium optimisation as a first step towards the feasible production of biopolymers with Botryococcus braunii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Current interest in the production of commercial biopolymers which are derived from renewable resources arises from the necessity to move from a fossil-based to a more sustainable economy. Microalgae are considered potential biopolymer producers although their use at an industrial scale is not feasible yet. In this sense, medium optimisation and operational conditions can be considered the first steps leading to growth and product productivity enhancement which are a prerequisite to boost the microalgae industry. This manuscript describes medium optimisation for two promising strains of the green alga Botryococcus braunii, B. braunii CCALA-778 (race A) and B. braunii AC761 (race B), which are natural producers of (exo)polysaccharides and hydrocarbons of high interest in the biopolymers industry. Medium optimisation was based on a three-step research process: (i) a literature survey to identify macro- and micronutrients that could be limiting Botryococcus growth, (ii) a 3-level factorial design experiment in microwell plates to evaluate modified media accordingly and (iii) validation of previous results in batch cultivation in Roux flasks. The results obtained show the significant impact of culture media optimisation in the growth dynamics and valuable compound accumulation of B. braunii. Attention should be given to each particular Botryococcus race and media should be defined accordingly. But overall, the new optimised media resulted in higher productivities which may contribute to reach sustainability of Botryococcus cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allard B, Casadevall E (1990) Carbohydrate composition and characterization of sugars from the green microalga Botryococcus braunii. Phytochemistry 29:1875–1878

    Article  CAS  Google Scholar 

  • Ambati RR, Ravi S, Aswathanarayana RG (2010) Enhancement of carotenoids in green alga-Botryococcus braunii in various autotrophic media under stress conditions. Int J Biomed Pharmaceut Sci 4:87–92

    Google Scholar 

  • Arad S, Rapoport L, Moshkovich A, van Moppes D, Karpasas M, Golan R, Golan Y (2006) Superior biolubricant from a species of red microalga. Langmuir 22:7313–7317

    Article  CAS  PubMed  Google Scholar 

  • Araie H, Shiraiwa Y (2009) Selenium utilization strategy by microalgae. Molecules 14:4880–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, Cambridge, UK, 293 p

    Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from enchanted rock and related algal species. Phycological Studies, University of Texas 4:1–95

    Google Scholar 

  • Blifernez-Klassen O, Chaudhari S, Klassen V, Wördenweber R, Steffens T, Cholewa D, Niehaus K, Kalinowski J, Kruse O (2018) Metabolic survey of Botryococcus braunii: impact of the physiological state on product formation. PLoS One 13:e0198976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  CAS  PubMed  Google Scholar 

  • Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O (1985) Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure and phosphate nutrition. Biotechnol Bioeng 27:286–295

    Article  CAS  PubMed  Google Scholar 

  • Cheng PF, Ji B, Gao L, Zhang W, Wang J, Liu T (2013) The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol 138:95–100

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Lee SM (2015) Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng 38:761–766

    Article  CAS  PubMed  Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261–266

    Article  CAS  Google Scholar 

  • Cosgrove J, Borowitzka MA (2011) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences. Springer, Dordrecht, pp 1–17

    Google Scholar 

  • Cuaresma M, Janssen M, Vílchez C, Wijffels RH (2009) Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnol Bioeng 104:352–359

    Article  CAS  PubMed  Google Scholar 

  • Cuaresma M, Buffing MF, Janssen M, Vílchez C, Wijffels RH (2012) Performance of Chlorella sorokiniana under simulated extreme winter conditions. J Appl Phycol 24:693–699

    Article  CAS  Google Scholar 

  • Dayananda C, Sarada R, Bhattacharya S, Ravishankar GA (2005) Effect of media and culture conditions on growth and hydrocarbon production by Botryococcus braunii. Process Biochem 40:3125–3131

    Article  CAS  Google Scholar 

  • Dayananda C, Sarada R, Kumar V, Ravishankar GA (2007) Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian fresh water bodies. Microb Biotechnol 10

  • Díaz KC, Atehortúa L (2014) Effect of different media on exopolysaccharide and biomass production by the green microalgae Botryococcus braunii. J Appl Phycol 26:2087–2095

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fernandes HL, Lupi F, Tomé MM, Sá-Correia I, Novais JM (1991) Rheological behaviour of the culture medium during growth of the microalga Botryococcus braunii. Bioresour Technol 38:133–136

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  • Furuhashi K, Saga K, Okada S, Imou K (2013) Seawater-cultured Botryococcus braunii for efficient hydrocarbon extraction. PLoS One 8:e66483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Liu J, Tian G (2011) Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour Technol 102:130–134

    Article  CAS  PubMed  Google Scholar 

  • Geider RJ, La Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39:275–301

    Article  CAS  PubMed  Google Scholar 

  • Gojkovic Z, Vílchez C, Torronteras R, Vigara J, Gómez-Jacinto V, Janzer N, Gómez Ariza JL, Márová I, Garbayo I (2014) Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture. Sci World J 2014:401265

  • Gojkovic Z, Garbayo I, Gómez Ariza JL, Márová I, Vílchez C (2015) Selenium bioaccumulation and toxicity in cultures of green microalgae. Algal Res 7:106–116

    Article  Google Scholar 

  • Gouveia JD, Ruiz J, Van den Broek LAM, Hesselink T, Peters S, Kleinegris DMM, Smith AG, Van der Veen D, Barbosa MJ, Wijffels RH (2017) Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content. J Biotechnol 258:77–86

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  • Hopkins WG, Hüner NPA (2009) Introduction to plant physiology, 4th edn. John Wiley & Sons, New Jersey

    Google Scholar 

  • Hutchins DA, Bruland KW (1998) Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393:561–564

    Article  CAS  Google Scholar 

  • Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119

    Article  Google Scholar 

  • Kita K, Okada S, Sekino H, Imou K, Yokoyama S, Amano T (2010) Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl Energy 87:2420–2423

    Article  CAS  Google Scholar 

  • Kojima E, Zhang K (1999) Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. J Biosci Bioeng 87:811–815

    Article  CAS  PubMed  Google Scholar 

  • Kouba A, Velíšek J, Stará A, Masojídek J, Kozák P (2014) Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common Barbel (Barbus barbus). BioMed Res Int 2914:408270

    Google Scholar 

  • Lagus A, Suomela J, Weithoff G, Heikkilä K, Helminen H, Sipura J (2004) Species-specific differences in phytoplankton responses to N and P enrichments and the N: P ratio in the Archipelago Sea, northern Baltic Sea. J Plankton Res 26:779–798

    Article  CAS  Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051

    Article  CAS  Google Scholar 

  • Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green alga Botryococcus brauii. Biotech Techniques 12:553–556

    Article  CAS  Google Scholar 

  • Li Y, Qin JG (2005) Comparison of grow than lipid content in three Botryococcus braunii strains. J Appl Phycol 17:551–556

    Article  CAS  Google Scholar 

  • Liu L, Wang Y, Zhang Y, Chen X, Zhang P, Ma S (2013) Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol Biotechnol 54:211–219

    Article  CAS  PubMed  Google Scholar 

  • Llamas A, Tejada-Jiménez M, Fernández E, Galván A (2011) Molybdenum metabolism in the alga Chlamydomonas stands at the crossroad of those in Arabidopsis and humans. Metallomics 3:578–590

    Article  CAS  PubMed  Google Scholar 

  • Lupi FM, Fernandes FLM, Tomé MM, Sá-Correia I, Novais JM (1994) Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enz Microb Technol 16:546–550

    Article  CAS  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012) Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. Bioenergy Res 5:915–925

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Mills MM, Arrigo KR (2010) Magnitude of oceanic nitrogen fixation influenced by the nutrient uptake ratio of phytoplankton. Nat Geosci 3:412–416

    Article  CAS  Google Scholar 

  • Moheimani NR, Matsuura H, Watanabe MM, Borowitzka MA (2014) Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J Appl Phycol 26:1453–1464

    Article  CAS  Google Scholar 

  • Nieuwerburgh LV, Wänstrand I, Snoeijs P (2004) Growth and C:N:P ratios in copepods grazing on N- or Si-limited phytoplankton blooms. Hydrobiologia 514:57–72

    Article  Google Scholar 

  • Qin J (2005) Bio-hydrocarbons from algae: impacts of temperature, light and salinity on algae growth. Rural Industries Research and Development Corporation Report 26. RIRDC, Canberra

  • Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98(3:560–564

    Article  CAS  Google Scholar 

  • Rao RR, Jiao A, Kohn DH, Stegemann JP (2012) Exogenous mineralization of cell-seeded and unseeded collagen–chitosan hydrogels using modified culture medium. Acta Biomater 8:1560–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon, and nitrogen sources. New Phytol 109:279–287

    Article  CAS  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 176–192

    Google Scholar 

  • Ruangsomboon S (2012) Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour Technol 109:261–265

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Domínguez MC, Vaquero I, Obregón V, De la Morena B, Vílchez C, Vega JM (2014) Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J Appl Phycol 27:1099–1108

    Article  CAS  Google Scholar 

  • Sakamoto K, Baba M, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Optimization of light for growth, photosynthesis, and hydrocarbon production by the colonial microalga Botryococcus braunii BOT-22. Bioresour Technol 110:474–479

    Article  CAS  PubMed  Google Scholar 

  • Shimamura R, Watanabe S, Sakakura Y, Shiho M, Kaya K, Watanabe MM (2012) Development of Botryococcus seed culture system for future mass culture. Procedia Environ Sci 15:80–89

    Article  CAS  Google Scholar 

  • Smith VH (1979) Nutrient dependence of primary productivity in lakes. Limnol Oceanogr 24:1051–1064

    Article  Google Scholar 

  • Song L, Qin JG, Su S, Xu J, Clarke S, Shan Y (2012) Micronutrient requirements for growth and hydrocarbon production in the oil producing green alga Botryococcus braunii (Chlorophyta). PLoS One 7:e41459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriol Rev 35:171–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, Chairez I (2020) Simultaneous optimization of biomass and metabolite production by a microalgae yeast co-culture under inorganic micronutrients. BioEnergy Res 13:974–985

    Article  CAS  Google Scholar 

  • Sueoka N, Chiang KS, Kates JR (1967) Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardtii: I. Isotopic transfer experiments with a strain producing eight zoospores. J Molec Biol 25:47–66

    Article  CAS  PubMed  Google Scholar 

  • Talero E, García-Mauriño S, Ávila-Román J, Rodríguez-Luna A, Alcaide A, Motilva V (2015) Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs 13:6152–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanoi T, Kawachi M, Watanabe MM (2011) Effects of carbon source on growth and morphology of Botryococcus braunii. J Appl Phycol 23:25–33

    Article  CAS  Google Scholar 

  • Tanoi T, Kawachi M, Watanabe MM (2014) Iron and glucose effects on the morphology of Botryococcus braunii with assumption on the colony formation variability. J Appl Phycol 26:1–8

    Article  CAS  Google Scholar 

  • Tejada-Jiménez M, Galván A, Fernández E (2011) Algae and humans share a molybdate transporter. Proc Nat Acad Sci 108:6420–6425

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss TL, Roth R, Goodson C, Vitha S, Black I, Azadi P, Rusch J, Holzenburg A, Timothy P, Devarenne TP, Goodenough U (2012) Colony organization in the green alga Botryococcus braunii (race B) is specified by a complex extracellular matrix. Eukaryot Cell 11:1424–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Wang J, Cong W, Cai Z, Ouyang F (2004) Utilization of nitrite as a nitrogen source by Botryococcus braunii. Biotechnol Lett 26:239–243

    Article  CAS  PubMed  Google Scholar 

  • Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040

    Article  CAS  PubMed  Google Scholar 

  • Yingying S, Hui W, Ganlin G, Yinfan P, Binlun Y (2014) The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr Polym 113:22–31

    Article  CAS  Google Scholar 

  • Yoshida M, Tanabe Y, Yonezawa N, Watanabe MM (2012) Energy innovation potential of oleaginous microalgae. Biofuels 3:761–781

    Article  CAS  Google Scholar 

  • Yoshimura T, Okada S, Honda M (2013) Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: optimal CO2, salinity, temperature, and irradiance conditions. Bioresour Technol 133:232–239

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu L, Ren Y, Chen F (2019) Characterization of exopolysaccharides produced by microalgae with antitumor activity on human colon cancer cells. Int J Biol Macromol 128:761–767

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been supported financially by the European Union under the Seventh framework programme (Project SPLASH: http://www.eu-splash.eu; contract number 311956).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cuaresma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research work was carried out while Elisabeth Bermejo was working at Algal Biotechnology Group, University of Huelva, CIDERTA.

Electronic supplementary material

ESM 1

(PDF 103 kb)

ESM 2

(PDF 38 kb)

ESM 3

(PDF 59 kb)

ESM 4

(PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermejo, E., Muñoz, Á., Ramos-Merchante, A. et al. Medium optimisation as a first step towards the feasible production of biopolymers with Botryococcus braunii. J Appl Phycol 32, 3667–3678 (2020). https://doi.org/10.1007/s10811-020-02245-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02245-7

Keywords

Navigation