Skip to main content
Log in

Suitability of Tisochrysis lutea at different growth phases as an enrichment diet for Brachionus plicatilis sp. complex rotifers

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In larviculture of marine finfish, Tisochrysis lutea cultured cells have a potential to be a sustainable enrichment diet for rotifers due to its de novo synthesis of docosahexaenoic acid (DHA). To improve its effectiveness in rotifer enrichment for later larviculture, we determined which growth phase of T. lutea can enhance DHA in polar lipids (PLs) in Brachionus plicatilis sp. complex rotifers without reducing their vigor. Tisochrysis lutea was harvested at logarithmic growth phase, deceleration growth phase, and stationary phase. The ambient concentrations of phosphorus (P) and nitrogen (N), and fatty acid composition of microalgae were measured. P was limited between logarithmic and deceleration growth phases, followed by N starvation in stationary phase. Total lipid DHA was lowest in logarithmic growth phase, whereas DHA levels increased in deceleration growth phase and maintained at high levels even in stationary phase. PL-DHA also increased during deceleration growth phase, although its abundance dropped during stationary phase. In a rotifer enrichment trial, T. lutea harvested in each phase were fed to B. plicatilis sp. complex rotifers for 12 h. The highest PL-DHA value for cells in deceleration growth phase reflected the concentrations of the rotifers. No significant differences were found in rotifer growth rate and egg ratio. Rotifers fed cells in deceleration growth phase exhibited higher swimming speeds than those fed the other cells, potentially linking to increased larval capture success. Therefore, we recommend the deceleration growth phase as an optimal timing for T. lutea harvest for the effective enrichment of B. plicatilis sp. complex rotifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo AB, Hagiwara A, Snell TW (2001) Effect of unionized ammonia, viscosity and protozoan contamination on reproduction and enzyme activity of the rotifer Brachionus rotundiformis. Hydrobiologia 446:363–368

    Article  Google Scholar 

  • Arney B, Liu W, Forster IP, Scott McKinley R, Pearce CM (2015) Feasibility of dietary substitution of live microalgae with spray-dried Schizochytrium sp. or Spirulina in the hatchery culture of juveniles of the Pacific geoduck clam (Panopea generosa). Aquaculture 444:117–133

    Article  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129

    Article  CAS  Google Scholar 

  • Ben-Amotz A, Fishier R, Schneller A (1987) Chemical composition of dietary species of marine unicellular algae and rotifers with emphasis on fatty acids. Mar Biol 95:31–36

    Article  CAS  Google Scholar 

  • Bendif EM, Probert I, Schroeder DC, de Vargas C (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J Appl Phycol 25:1763–1776

    Article  CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proc Natl Acad Sci U S A 90:1561–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben-Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors. Aquaculture 72:247–253

    Article  Google Scholar 

  • Brown MR (2002) Nutritional value and use of microalgae in aquaculture. In: Crus-Suarez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Cotres MG, Simoes N (eds) Avances en Nutrición Acuícola, VI. pp 281–292

  • Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73

    Article  CAS  Google Scholar 

  • Burgess JG, Iwamoto K, Miura Y, Takano H, Matsunaga T (1993) An optical fibre photobioreactor for enhanced production of the marine unicellular alga Isochrysis aff. galbana T-Iso (UTEX LB 2307) rich in docosahexaenoic acid. Appl Microbiol Biotechnol 39:456–459

    Article  CAS  Google Scholar 

  • Castell J, Blair T, Neil S, Howes K, Mercer S, Reid J, Young-Lai W, Gullison B, Dhert P, Sorgeloos P (2003) The effect of different HUFA enrichment emulsions on the nutritional value of rotifers (Brachionus plicatilis) fed to larval haddock (Melanogrammus aeglefinus). Aquac Int 11:109–117

    Article  CAS  Google Scholar 

  • Cheng P, Wang Y, Osei-Wusu D, Liu T, Liu D (2018) Effects of seed age, inoculum density, and culture conditions on growth and hydrocarbon accumulation of Botryococcus braunii SAG807-1 with attached culture. Bioresour Bioprocess 5:15

    Article  Google Scholar 

  • Conceição LEC, Yúfera M, Makridis P, Morais S, Dinis MT (2019) Live feeds for early stages of fish rearing. Aquac Res 41:613–640

    Article  Google Scholar 

  • Dhert PG, Rombaut G, Suantika G, Sorgeloos P (2001) Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture 200:129–146

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ewart JW, Pruder GD (1981) Comparative growth of Isochrysis galbana Parke and Isochrysis aff. galbana, clone T-Iso, at four temperatures and three light intensities. J World Maricult Soc 12:333–339

    Article  Google Scholar 

  • Fernández-Palacios H, Izquierdo MS, Robaina L, Valencia A, Salhi M, Vergara JM (1995) Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture 132:325–337

    Article  Google Scholar 

  • Ferreira M, Maseda A, Fábregas J, Otero A (2008) Enriching rotifers with “premium” microalgae. Isochrysis aff galbana clone T-ISO. Aquaculture 279:126–130

    Article  Google Scholar 

  • Ferreira M, Cortina-Burgueño Á, Freire I, Otero A (2018) Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture 491:351–357

    Article  CAS  Google Scholar 

  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–506

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Hirayama K, Natsukari Y (1991) Morphological differences between two types of the rotifer Brachionus plicatilis O. F Müller. J Exp Mar Biol Ecol 151:29–41

    Article  Google Scholar 

  • Gisbert E, Villeneuve L, Zambonino-Infante JL, Quazuguel P, Cahu CL (2005) Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development. Lipids 40:609–618

    Article  CAS  PubMed  Google Scholar 

  • Glencross BD, Baily J, Berntssen MHG, Hardy R, MacKenzie S, Tocher DR (2020) Risk assessment of the use of alternative animal and plant raw material resources in aquaculture feeds. Rev Aquac 12:703–758

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G, Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271:7501–7505

    Article  PubMed  Google Scholar 

  • Hagiwara A, Gallardo WG, Assavaaree M, Kotani T, Araujo AB (2001) Live food production in Japan: recent progress and future aspects. Aquaculture 200:111–127

    Article  Google Scholar 

  • Hamre K, Yúferam M, Rønnestad I, Boglione C, Conceiçáo LEC, Izquierdo M (2013) Fish larval nutrition and feed formulation: knowledge gaps and bottlenecks for advances in larval rearing. Rev Aquac 5:S26–S58

    Article  Google Scholar 

  • Harrison PJ, Thompson PA, Calderwood GS (1990) Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J Appl Phycol 2:45–56

    Article  Google Scholar 

  • Hayashi M, Yukino T, Maruyama I, Kido S, Kitaoka S (2001) Uptake and accumulation of exogenous docosahexaenoic acid by Chlorella. Biosci Biotechnol Biochem 65:202–204

    Article  CAS  PubMed  Google Scholar 

  • Helm MM, Laing I (1987) Preliminary observations on the nutritional value of ‘Tahiti Isochrysis’ to bivalve larvae. Aquaculture 62:281–288

    Article  Google Scholar 

  • Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. J Appl Phycol 3:169–181

    Article  CAS  Google Scholar 

  • Huang L, Xu J, Zong C, Zhu S, Ye M, Zhou C, Chen H, Yan X (2017) Effect of high temperature on the lipid composition of Isochrysis galbana Parke in logarithmic phase. Aquac Int 25:327–339

    Article  CAS  Google Scholar 

  • Huang B, Marchand J, Thiriet-Rupert S, Carrier G, Saint-Jean B, Lukomska E, Moreau B, Morant-Manceau A, Bourgaran G (2019) Betaine lipid and neutral lipid production under nitrogen or phosphorus limitation in the marine microalga Tisochrysis lutea (Haptophyta). Algal Res 40:101506

    Article  Google Scholar 

  • Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16

    Article  CAS  PubMed  Google Scholar 

  • Imada O, Kageyama Y, Watanabe T, Kitajima C, Fujita S, Yone Y (1979) Development of a new yeast as a culture medium for living feeds used in the production of fish seed. Nippon Suisan Gakkaishi 45:955–959 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Iwai M, Hori K, Sasaki-Sekimoto Y, Shimojima M, Ohta H (2015) Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol 6:912

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen CR, Ferrando MD, Persoone G (1994) Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus. IV. Rotifer behavior as a sensitive and rapid sublethal test criterion. Ecotoxicol Environ Saf 28:244–255

    Article  CAS  PubMed  Google Scholar 

  • Jensen TC, Verschloor AM (2004) Effects of food quality on life history of the rotifer Brachionus calyciflorus Pallas. Freshw Biol 49:1138–1151

    Article  Google Scholar 

  • Katerina K, Berge GM, Turid M, Aleksei K, Grete B, Trine Y, Mats C, John S, Bente R (2020) Microalgal Schizochytrium limacinum biomass improves growth and filet quality when used long-term as a replacement for fish oil, in modern salmon diets. Front Mar Sci 7:57

    Article  Google Scholar 

  • Kato M, Hajiro-Nakanishi K, Sano H, Miyachi S (1995) Polyunsaturated fatty acids and betaine lipids from Pavlova lutheri. Plant Cell Physiol 36:1607–1611

    CAS  Google Scholar 

  • Kato M, Okauchi M, Nakagami S (2004) Development of a concentration technique for unicellular diatoms, Chaetoceros gracilis and Chaetoceros calcitrans, as food organisms. Suisanzoshoku 52:231–237 (in Japanese with English abstract)

    Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  PubMed  Google Scholar 

  • Kissil GW, Koven WM (1990) Preparation of oils, enhanced in highly unsaturated fatty acid (HUFA) content, by low temperature crystallization separation, for rotifer (Brachionus plicatilis) enrichment. Aquaculture 88:69–74

    Article  CAS  Google Scholar 

  • Kjørsvik E, Olsen C, Wold PA, Hoehne-Reitan K, Cahu CL, Rainuzzo J, Olsen AI, Øie G, Olsen Y (2009) Comparison of dietary phospholipids and neutral lipids on skeletal development and fatty acid composition in Atlantic cod (Gadus morhua). Aquaculture 294:246–255

    Article  CAS  Google Scholar 

  • Kobayashi T, Nagase T, Hino A, Takeuchi T (2008) Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fish Sci 74:649–656

    Article  CAS  Google Scholar 

  • Koiso M, Hino A (1999) Studies on the assessment of the growth potential of the rotifer, Brachionus plicatilis, by evaluating physiological activities. Suisanzoshoku 47:249–256 (in Japanese with English abstract)

    Google Scholar 

  • Koiso M, Hino A (2001) Effects of salinity on population growth, nutritive value, and feeding cost of the enriched rotifer, Brachionus plicatilis. Suisanzoshoku 49:41–46 (in Japanese with English abstract)

    Google Scholar 

  • Korstad J, Neyts A, Danielson T, Overrein I, Olsen Y (1995) Use of swimming speed and egg ratio as predictors of the status of rotifer cultures in aquaculture. Hydrobiologia 313:395–398

    Article  Google Scholar 

  • Kotani T, Genka T, Fushimi H, Hayashi M, Dierckens K, Sorgeloos P (2009) Effect of cultivation methods on nutritional enrichment of euryhaline rotifer Brachionus plicatilis. Fish Sci 75:975–984

    Article  CAS  Google Scholar 

  • Koven WM, Tandler A, Kissil GWM, Sklan D, Friezlander O, Harel M (1990) The effect of dietary (n-3) polyunsaturated fatty acids on growth, survival and swim bladder development in Sparus aurata larvae. Aquaculture 91:131–141

    Article  CAS  Google Scholar 

  • Lee M-C, Park JC, Yoon D-S, Choi H, Kim H-J, Shin K-H, Hagiwara A, Han J, Park HG, Lee J-S (2019a) Genome-wide characterization and expression of the elongation of very long chain fatty acid (Elovl) genes and fatty acid profiles in the alga (Tetraselmis suecica) fed marine rotifer Brachionus koreanus. Comp Biochem Physiol D 30:179–185

    CAS  Google Scholar 

  • Lee M-C, Park JC, Yoon D-S, Choi H, Shin K-H, Kim H-J, Hagiwara A, Lee J-S (2019b) Lipid metabolism modulation by five different food types in the monogonont marine rotifer Brachionus koreanus. Aquaculture 30:596–601

    Article  CAS  Google Scholar 

  • Li K, Olsen Y (2015) Effect of enrichment time and dietary DHA and non-highly unsaturated fatty acid composition on the efficiency of DHA enrichment in phospholipid of rotifer (Brachionus Cayman). Aquaculture 446:310–317

    Article  CAS  Google Scholar 

  • Li S, Xu J, Chen J, Chen J, Zhou C, Yan X (2014) The major lipid changes of some important diet microalgae during the entire growth phase. Aquaculture 428–429:104–110

    Article  CAS  Google Scholar 

  • Lin YH, Chang FL, Tsao CY, Leu JY (2007) Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor. Biochem Eng J 37:166–176

    Article  CAS  Google Scholar 

  • Liu C-P, Lin L-P (2001) Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324. Bot Bull Acad Sin 42:207–214

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:256–275

    Article  Google Scholar 

  • Lubzens E, Marko A, Tietz A (1985) De novo synthesis of fatty acids in the rotifer, Brachionus plicatilis. Aquaculture 47:27–37

    Article  CAS  Google Scholar 

  • Lubzens E, Sukenik A (1995) Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133:295–309

    Article  Google Scholar 

  • Ma Z, Qin JG (2014) Replacement of fresh algae with commercial formulas to enrich rotifers in larval rearing of yellowtail kingfish Seriola lalandi (Valenciennes, 1833). Aquac Res 45:949–960

    Article  CAS  Google Scholar 

  • Malapascua J, Jerez C, Sergejevová M, Figueroa F, Masojídek J (2014) Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques. Aquat Biol 22:123–140

    Article  Google Scholar 

  • Martin P, Van Mooy BAS, Heithoff A, Dyhrman ST (2011) Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J 5:1057–1060

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Okawa R, Anraku K, Kotani T (2017) Application of spectrophotometry to estimate the optimum culture conditions for Nannochloropis oculata as a diet for zooplankton. Aquacult Sci 65:209–219

    Google Scholar 

  • Matsui H, Anraku K, Kotani T (2019) Spectrophotometry can monitor changes in algal metabolism triggered by nutrient deficiency in Nannochloropsis oculata cultured under various light-emitting diode light regimes. Fish Sci 85:167–176

    Article  CAS  Google Scholar 

  • Matsui H, Shiozaki K, Okumura Y, Ishikawa M, Waqalevu V, Hayasaka O, Honda A, Kotani T (2020) Effects of phosphorous deficiency of a microalga Nannochloropsis oculata on its fatty acid profiles and intracellular structure and the effectiveness in rotifer nutrition. Algal Res 49:101905

    Article  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE (2007) Effect of nitrogen starvation on optical properties, pigments, andarachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    Article  CAS  Google Scholar 

  • Mills S, Alcántara-Rodríguez JA, Ciros-Pérez J, Gómez A, Hagiwara A, Galindo KH, Jersabek CD, Malekzadeh-Viayeh R, Leasi F, Lee J-S, Welch DBM, Papakostas S, Riss S, Segers H, Serra M, Shiel R, Smolak R, Snell TW, Stelzer C-P, Tang CQ, Wallace RL, Fontaneto D, Walsh EJ (2017) Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796:39–58

    Article  CAS  Google Scholar 

  • Mourente G, Rodriguez A, Tocher DR, Sargent JR (1993) Effects of dietary docosahexaenoic acid (DHA; 22:6n-3) on lipid and fatty acid compositions and growth in gilthead sea bream (Sparus aurata L.) larvae during first feeding. Aquaculture 112:79–98

    Article  CAS  Google Scholar 

  • Mühlroth A, Winge P, Assimi A, El Jouhet J, Maréchal E, Hohmann-Marriott MF, Vadstein O, Bones AM (2017) Mechanisms of phosphorus acquisition and lipid class remodeling under P limitation in a marine microalga. Plant Physiol 175:1543–1559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Øie G, Olsen Y (1997) Protein and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding condition. Hydrobiologia 358:251–258

    Article  Google Scholar 

  • Øie G, Reitan KI, Olsen Y (1994) Comparison of rotifer culture quality with yeast plus oil and algal-based cultivation diets. Aquac Int 2:225–238

    Google Scholar 

  • Okauchi M, Kawamura K, Mizukami Y (1997) Nutritive value of ‘Tahiti IsochrysisIsochrysis sp. for larval greasy back shrimp, Metapenaeus ensis. Bull Natl Res Inst Aquacult 26:1–11

    CAS  Google Scholar 

  • Okuyama H, Orikasa Y, Nishida T (2008) Significance of antioxidative functions of eicosapentaenoic and docosahexaenoic acids in marine microorganisms. Appl Environ Microbiol 74:570–574

    Article  CAS  PubMed  Google Scholar 

  • Olsen Y, Rainuzzo JR, Reitan KI, Vadstein O (1993) Manipulation of lipids and ω-3 fatty acids in Brachionus plicatilis. In: Reinertsen H, Dahle LA, Jorgensen L, Tvinnereim K (eds) Proceedings of the international conference on fish farming technology. Trondheim, Norway, pp. 9–12

  • Palmtag MR, Faulk CK, Holt GJ (2006) Highly unsaturated fatty acid composition of rotifers (Brachionus plicatilis) and Artemia fed various enrichments. J World Aquacult Soc 37:126–131

    Article  Google Scholar 

  • Park HG, Puvanendran V, Kellet A, Parrich CC, Brown JA (2006) Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). ICES J Mar Sci 63:285–295

    Article  CAS  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

  • Pérez-Pérez ME, Lemaire SD, Crespo J (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rainuzzo JR, Olsen Y, Rosenlund G (1989) The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture 79:157–161

    Article  Google Scholar 

  • Rasdi NW, Qin JG (2015) Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J Appl Phycol 27:2221–2230

    Article  CAS  Google Scholar 

  • Reichardt TA, Collins AM, Garcia OF, Ruffing AM, Jones HDT, Timlin JA (2012) Spectroradiometric monitoring of Nannochloropsis salina growth. Algal Res 1:22–31

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1993) Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture 118:257–275

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Article  Google Scholar 

  • Renaud SM, Thinh L-V, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    Article  CAS  Google Scholar 

  • Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I (2014) Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem 160:393–400

    Article  CAS  PubMed  Google Scholar 

  • Sarker PK, Kapuscinski AR, Lanois AJ, Livesey ED, Bernhard KP, Coley ML (2016) Towards sustainable aquafeeds: complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile tilapia (Oreochromis niloticus). PLoS One 11:e0156684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Segers H (1995) Nomenclatural consequences of some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313:121–122

    Article  Google Scholar 

  • Seong T, Matsutani H, Haga Y, Kitagima R, Satoh S (2019) First step of non-fish meal, non-fish oil diet development for red seabream, (Pagrus major), with plant protein sources and microalgae Schizochytrium sp. Aquac Res 50:2460–2468

    Article  CAS  Google Scholar 

  • Seychelles LH, Audet C, Tremblay R, Fournier R, Pernet F (2009) Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Müller) using frozen-concentrated microalgae. Aquac Nutr 15:431–439

    Article  CAS  Google Scholar 

  • Shemi A, Schatz D, Fredricks HF, Van Mooy BAS, Porat Z, Vardi A (2016) Phosphorus starvation induces membrane remodeling and recycling in Emiliania huxleyi. New Phytol 211:886–898

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Yu A, Li M, Ou X, Xing L, Li M (2012) Identification of a novel C22-∆4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from Isochrysis galbana and its expression in Saccharomyces cerevisiae. Biotechnol Lett 34:2265–2274

    Article  CAS  PubMed  Google Scholar 

  • Snell TW, Childress MJ, Boyer EM (1987) Assessing the status of rotifer cultures. J World Aquacult Soc 18:270–277

    Article  Google Scholar 

  • Su X, Xu J, Yan X, Zhao P, Chen J, Zhou C, Zhao F, Li S (2013) Lipidomic changes during different growth stages of Nitzschia closterium f. minutissima. Metabolomics 9:300–310

    Article  CAS  Google Scholar 

  • Su J, Ye M, Lou Y, Yang Z, Sun T, Zhang R, Xu J, Zhou C, Yan X (2017) Low-molecular-mass organic acid and lipid responses of Isochrysis galbana Parke to high temperature stress during the entire growth stage. Algal Res 26:93–103

    Article  Google Scholar 

  • Sukenik A, Wahnon R (1991) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I Isochrysis galbana. Aquaculture 97:61–72

    Article  CAS  Google Scholar 

  • Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117:313–326

    Article  CAS  Google Scholar 

  • Thépot V, Mangott A, Pirozzi I (2016) Rotifers enriched with a mixed algal diet promote survival, growth and development of barramundi larvae, Lates calcarifer (Bloch). Aquacult Rep 3:147–158

    Article  Google Scholar 

  • Tomoda T, Koiso M, Kuwada H, Chern JE, Takeuchi T (2004) Dietary value of marine rotifer Brachionus plicatilis in different population growth stages for larval red seabream Pagrus major. Nippon Suisan Gakkaishi 70:573–582 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Tomoda T, Koiso M, Kuwada H, Chen JN, Takeuchi T (2005) Dietary value of marine rotifer Brachionus plicatilis at different population growth stages for larval Japanese flounder Paralichthys olivaceus. Nippon Suisan Gakkaishi 71:555–562 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Van Deenen LLM (1972) Permeability and topography of membranes. Chem Phys Lipids 8:366–373

    Article  PubMed  Google Scholar 

  • Van Mooy BAS, Fredricks HFP, Byron ED, Sonya TK, David MK, Michal L, Michael W, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  PubMed  CAS  Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Waqalevu VP, Matsui H, Honda A, Dossou S, Yamamoto A, Shiozaki K, Kotani T (2019) Enrichment effect on two Brachionus plicatilis sp. complex morphotypes fed three nutritional enrichment diets. Aquacult Sci 67:139–155

    Google Scholar 

  • Watanabe T, Kitajima C, Arakawa T, Fukusho K, Fujita S (1978) Nutritional quality of rotifer Brachionus plicatilis as a living feed from the viewpoint of essential fatty acids for fish. Nippon Suisan Gakkaishi 44:1109–1114 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • White S, Anandraj A, Bux F (2011) PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol 102:1675–1682

    Article  CAS  PubMed  Google Scholar 

  • Witting LA, Horwitt MK (1964) Effect of degree of fatty acid unsaturation in tocopherol deficiency-induced creatinuria. J Nutr 82:19–33

    Article  CAS  PubMed  Google Scholar 

  • Wold PA, Hoehne-Reitan K, Cahu CL, Infante JZ, Rainuzzo J, Kjørsvik E (2009) Comparison of dietary phospholipids and neutral lipids: effects on gut, liver and pancreas histology in Atlantic cod (Gadus morha L.) larvae. Aquac Nutr 15:73–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yutaka Takeuchi for lending us a VHX-2000 digital microscope. We wish to thank Professor Atsushi Hagiwara for critical comments on the nutritional enrichment of rotifers. We would also like to acknowledge the assistance from members of the Laboratory of Larval Rearing Management at Faculty of Fisheries, Kagoshima University.

Funding

This work was supported by the Sasakawa Scientific Research Grant from the Japan Science Society (#28-508). Also, we received Functional Enhancement Expenses in Kagoshima University Operating Cost Grant “Advanced research infrastructure of biology and physiology of eel species inhabiting in Southern Kyushu, Japan, Taiwan and South East Asia and Creation of Industry-academia-government network to induce the social implementation of those research result.”

Author information

Authors and Affiliations

Authors

Contributions

HM designed the study and experiments. HM and MMBI conducted the experiments and collected the data. HM prepared a draft of the article and revised it with VW. MI provided the methodologies for GC analysis. HM and VW performed data analyses. TK supervised the studies. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Hideaki Matsui.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsui, H., Intoy, M.M.B., Waqalevu, V. et al. Suitability of Tisochrysis lutea at different growth phases as an enrichment diet for Brachionus plicatilis sp. complex rotifers. J Appl Phycol 32, 3933–3947 (2020). https://doi.org/10.1007/s10811-020-02216-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02216-y

Keywords

Navigation