Skip to main content
Log in

Co-cultivation of Euglena gracilis and Pseudoalteromonas sp. MEBiC 03607 for paramylon production

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Depending on the culture conditions, Euglena gracilis can produce a variety of macromolecules such as vitamins, lipids, proteins, and polysaccharides. In particular, the ability of E. gracilis to store a lot of β-glucans implies it has significant biotechnological potential. In this study, the growth of E. gracilis and its paramylon content were improved through co-cultivation with the bacterium Pseudoalteromonas sp. MEBiC 03607. To determine the optimal co-cultivation strategy, the effects of the algae-to-bacterial inoculum ratio and growth stage of E. gracilis were examined. Under optimal conditions, the growth of E. gracilis and its paramylon content were increased by more than 17 and 25%, respectively, as a direct result of the cultivation with bacteria. Through qRT-PCR analysis, it was confirmed that when the bacteria were inoculated, the expression of gene related to β-glucan synthase was increased, while the expression of wax ester synthase-related gene was decreased. This indicates that bacteria promote the synthesis of β-glucans of E. gracilis and inhibit the conversion of β-glucan to wax ester. These results demonstrate a novel approach to improve the growth of E. gracilis and its paramylon productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abi A, Müller C, Jördening H-J (2017) Improved laminaribiose phosphorylase production by Euglena gracilis in a bioreactor: a comparative study of different cultivation methods. Biotechnol Bioprocess Eng 22:272–280

    Article  CAS  Google Scholar 

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Barsanti L, Vismara R, Passarelli V, Gualtieri P (2001) Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J Appl Phycol 13:59–65

    Article  CAS  Google Scholar 

  • Briand J, Calvayrac R (1980) Paramylon synthesis in heterotrophic and photo heterotrophic Euglena (Euglenophyceae). J Phycol 16:234–239

    Article  CAS  Google Scholar 

  • Dos Santos FV, Rocchetta I, Conforti V, Bench S, Feldman R, Levin MJ (2007) Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene 389:136–145

    Article  Google Scholar 

  • Du B, Bian Z, Xu B (2014) Skin health promotion effects of natural beta-glucan derived from cereals and microorganisms: a review. Phytother Res 28:159–166

    Article  CAS  PubMed  Google Scholar 

  • Fukami K, Nishijima T, Ishida Y (1997) Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358:185–191

    Article  Google Scholar 

  • González-Fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661

    Article  PubMed  Google Scholar 

  • González-Moreno S, Gómez-Barrera J, Perales H, Moreno-Sánchez R (1997) Multiple effects of salinity on photosynthesis of the protist Euglena gracilis. Physiol Plant 101:777–786

    Article  Google Scholar 

  • Gouveia JD, Moers A, Griekspoor Y, van den Broek LAM, Springer J, Sijtsma L, Sipkema D, Wijffels RH, Barbosa MJ (2019) Effect of removal of bacteria on the biomass and extracellular carbohydrate productivity of Botryococcus braunii. J Appl Phycol 31:3453–3463

    Article  CAS  Google Scholar 

  • Grimm P, Risse JM, Cholewa D, Müller JM, Beshay U, Friehs K, Flaschel E (2015) Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion. J Biotechnol 215:72–79

    Article  CAS  PubMed  Google Scholar 

  • Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y (2008) Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J Appl Microbiol 105:1672–1677

    Article  CAS  PubMed  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1983) Production and composition of wax esters by fermentation of Euglena gracilis. Agric Biol Chem 47:2669–2671

    CAS  Google Scholar 

  • Jeon MS, Oh J-J, Kim JY, Han S-I, Sim SJ, Choi Y-E (2019) Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485. Bioresour Technol 288:121513

    Article  CAS  PubMed  Google Scholar 

  • Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S (2014) Role of rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69:95–105

    Article  CAS  Google Scholar 

  • Lafarge-Frayssinet C, Bertaux O, Valencia R, Frayssinet C (1978) Evolution of ornithine decarboxylase activity during the cell cycle of Euglena gracilis Z in synchronous culture influence of vitamin B-12. Biochim Biophys Acta Gen Subj 539:435–444

    Article  CAS  Google Scholar 

  • Li M, Muñoz HE, Goda K, Di Carlo D (2017) Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Sci Rep 7:10802

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Willför S, Xu C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5:31–61

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Meena D, Das P, Kumar S, Mandal S, Prusty A, Singh S, Akhtar M, Behera B, Kumar K, Pal A (2013) Beta-glucan: an ideal immunostimulant in aquaculture (a review). Fish Physiol Biochem 39:431–457

    Article  CAS  PubMed  Google Scholar 

  • Mouget J-L, Dakhama A, Lavoie MC, de la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18:35–43

    Article  CAS  Google Scholar 

  • Natrah FM, Bossier P, Sorgeloos P, Yusoff FM, Defoirdt T (2014) Significance of microalgal–bacterial interactions for aquaculture. Rev Aquacult 6:48–61

    Article  Google Scholar 

  • Noble A, Kisiala A, Galer A, Clysdale D, Emery RN (2014) Euglena gracilis (Euglenophyceae) produces abscisic acid and cytokinins and responds to their exogenous application singly and in combination with other growth regulators. Eur J Phycol 49:244–254

    Article  CAS  Google Scholar 

  • Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S (2018) Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 38:690–703

    Article  CAS  PubMed  Google Scholar 

  • Ramanan R, Kim B-H, Cho D-H, Oh H-M, Kim H-S (2016) Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29

    Article  CAS  PubMed  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Balzaretti V, de Molina MCR (2012) Chromium induced stress conditions in heterotrophic and auxotrophic strains of Euglena gracilis. Ecotoxicol Environ Saf 84:147–154

    Article  CAS  PubMed  Google Scholar 

  • Rop O, Mlcek J, Jurikova T (2009) Beta-glucans in higher fungi and their health effects. Nutr Rev 67:624–631

    Article  PubMed  Google Scholar 

  • Schwarzhans J-P, Cholewa D, Grimm P, Beshay U, Risse J-M, Friehs K, Flaschel E (2015) Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions. J Appl Phycol 27:1389–1399

    Article  CAS  Google Scholar 

  • Sendra M, Yeste MP, Gatica JM, Moreno-Garrido I, Blasco J (2017) Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 179:279–289

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Suzuki K, Mitra S, Arashida R, Yoshida E, Nakano R, Yabuta Y, Takeuchi T (2009) Hepatoprotective effects of paramylon, a β-1,3-D-glucan isolated from Euglena gracilis Z, on acute liver injury induced by carbon tetrachloride in rats. J Vet Met Sci 71:885–890

    Article  CAS  Google Scholar 

  • Sugiyama A, Hata S, Suzuki K, Yoshida E, Nakano R, Mitra S, Arashida R, Asayama Y, Yabuta Y, Takeuchi T (2010) Oral administration of paramylon, a β-1,3-D-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J Vet Met Sci:1002090154

  • Tanaka Y, Ogawa T, Maruta T, Yoshida Y, Arakawa K, Ishikawa T (2017) Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis. FEBS Lett 591:1360–1370

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama T, Kurihara K, Ogawa T, Maruta T, Ogawa T, Ohta D, Sawa Y, Ishikawa T (2017) Wax ester synthase/diacylglycerol acyltransferase isoenzymes play a pivotal role in wax ester biosynthesis in Euglena gracilis. Sci Rep 7:13504

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Wang H, Li X, Zhao Q, Yin Y, Xi L, Ge B, Qin S (2020) Enhanced biomass and lipid production by co-cultivation of Chlorella vulgaris with Mesorhizobium sangaii under nitrogen limitation. J Appl Phycol 32:233–242

    Article  CAS  Google Scholar 

  • Yamamoto FY, Sutili FJ, Hume M, Gatlin DM III (2018) The effect of β-1, 3-glucan derived from Euglena gracilis (Algamune™) on the innate immunological responses of Nile tilapia (Oreochromis niloticus L.). J Fish Dis 41:1579–1588

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Marine Biotechnology Program of the Korea Institute of Marine Science and Technology Promotion (KIMST), which is funded by the Ministry of Oceans and Fisheries (MOF) (No.20170488). This research was also supported by a Korea University Grant and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2018M3A9F3055925 and 2019R1A2C2087449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-E Choi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, M.S., Han, SI., Kim, J.Y. et al. Co-cultivation of Euglena gracilis and Pseudoalteromonas sp. MEBiC 03607 for paramylon production. J Appl Phycol 32, 3679–3686 (2020). https://doi.org/10.1007/s10811-020-02215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02215-z

Keywords

Navigation