Skip to main content
Log in

Addition of carbon dioxide, followed by irradiance increase, as optimization strategy for the cultivation of the red seaweed Kappaphycus alvarezii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This work aimed to verify the effects of adding CO2 and irradiance to Kappaphycus alvarezii cultivation. Thalli were cultured in vitro for 2 weeks under low irradiance (50 μmol photons m−2 s−1) with the addition of CO2 according to the following concentrations: 142× 103 ppm (1CO2, 0.1 L min−1), 285 × 103 ppm (2CO2, 0.2 L min−1) and 428 × 103 ppm (3CO2, 0.3 L min−1), followed by culture under higher irradiance (200 μmol photons m−2 s−1) for 2 more weeks. Control had no CO2 addition. Afterwards, growth rate, chlorophyll a and carotenoid content were quantified. Samples were submitted to light microscopy and transmission electron microscopy. Growth rates of different treatments or control between experimental periods showed no significant differences, except for 2CO2 treatment at the end of each period. Kappaphycus alvarezii cultivated with CO2 addition showed cell wall thickening and increasing quantity of starch granules, chlorophyll a and carotenoids compared with control. Exposed to high irradiance, control samples showed signs of stress, such as changes in chloroplast, starch granules quantity decrease and total chlorophyll a and carotenoids increase. Samples cultivated with CO2 showed an increase in the quantity and size of the starch granules and an increase in the number of organelles (mitochondria) related to energy generation and cell construction (Golgi complex). Such alterations suggest cellular response after CO2 addition, such as the formation of starch reserves and cell wall thickening, which could make plants more tolerant to environmental stress during transport from indoor condition to sea farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andria J, Vergara J, Perez-Llorens JL (1999) Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cádiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol 34:497–504

    Google Scholar 

  • Borlongan IAG, Gerung GS, Nishihara GN, Terada R (2017) Light and temperature effects on photosynthetic activity of Eucheuma denticulatum and Kappaphycus alvarezii (brown and green color morphotypes) from Sulawesi Utara, Indonesia. Phycol Res 65:69–79

    CAS  Google Scholar 

  • Bouzon ZL (2006) Histoquímica e ultra-estrutura da ontogênese dos tetrasporângios de Hypnea musciformis (Wulfen) J. V. Lamour. (Gigartinales, Rhodophyta). Rev Bras Bot 29:229–238

    Google Scholar 

  • Bréhélin C, Kessler F, Vanwijk (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    PubMed  Google Scholar 

  • Chung IK, Beardall J, Mehta S, Sahoo D, Stojkovic S (2010) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23:877–886

    Google Scholar 

  • Edwards P (2000) Aquaculture. Poverty impacts and livelihoods. Natural Resource Perspectives, No. 56. Overseas Development Institute, London 4 pp

    Google Scholar 

  • Edwards P, Demaine H, Innes-Taylor N, Turongruang D (1996) Sustainable aquaculture for small-scale farmers: need for a balanced model. Outlook Agric 25:19–26

    Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture: meeting the sustainable development goals. Rome. Italy

  • Flores ALG (2014) Viabilidade do cultivo em tanques de macroalgas Kappaphycus alvarezii (Rhodophyta, gigartinales) para manutenção de matrizes. Dissertation, Universidade Federal de Santa Catarina, Florianópolis, Brazil

  • Fournet I, Zinoun M, Deslandes E, Diouris M, Floc'h JY (1999) Floridean starch and carrageenan contents as responses of the red alga Solieria chordalisto culture conditions. Eur J Phycol 34:125–130

    Google Scholar 

  • Gahan PB (1984) Plant histochemistry and cytochemistry: an introduction, vol 18. Academic Press, Florida

    Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • Gordon EM, McCandless EL (1973) Ultrastructure and histochemistry of Chondrus crispus stack. Proce Nova Scotia Inst Sci 27:111–133

    Google Scholar 

  • Graham LE, Wilcox LW (2009) Algae. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hayashi L, Hurtado AQ, Msuya FE, Bleicher-Lhonneur G, Critchley AT (2010) A review of Kappaphycus farming: prospects and constraints. In: Seckbach J, Einav R, Israel A (eds) Seaweeds and their role in globally changing environments. Cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 251–283

  • Hayashi L, Santos AA, Faria GSM, Nunes BG, Souza MS, Fonseca ALD, Barreto PLM, Oliveira EC, Bouzon ZL (2011a) Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) cultivated in subtropical waters in Southern Brazil. J Appl Phycol 23:337–343

    Article  Google Scholar 

  • Hayashi L, Faria GSM, Nunes BG, Zitta CS, Scariot LA, Rover T, Felix MRL, Bouzon ZL (2011b) Effects of salinity on the growth rate, carrageenan yield, and cellular structure of Kappaphycus alvarezii (Rhodophyta, Gigartinales) cultured in vitro. J Appl Phycol 23:439–447

    Article  Google Scholar 

  • Holzinger A, Lütz C, Karsten U, Wiencke C (2004) The effect of ultraviolet radiation on ultrastructure and photosynthesis in the red macroalgae Palmaria palmata and Odonthalia dentata from Arctic waters. Plant Biol 6:568–577

    Article  CAS  Google Scholar 

  • Indriatmoko H, Limantara L, Brotosudarmo THP (2015) Composition of photosynthetic pigments in a red alga Kappaphycus alvarezii cultivated in different depths. Procedia Chem 14:193–201

    Article  CAS  Google Scholar 

  • Iskandar A, Syam R, Trijuno DD (2014) Content of carrageenan, chlorophyll a and carotenoid of Kappaphycus alvarezii cultivated in different seawater depth Laikang Village, District of Mangarabombang, Takalar Regency. JAB 2:1–9

    Google Scholar 

  • Israel A, Gavrieli J, Glazer A, Friedlander M (2009) Utilization of flue gas from a power plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture 249:311–316

    Google Scholar 

  • Ji Y, Xu Z, Zou D, Gao K (2016) Ecophysiological responses of marine macroalgae to climate change factors. J Appl Phycol 28:2953–2967

    CAS  Google Scholar 

  • Korbee N, Navarro NP, García-Sánchez M, Celis-Plá PSM, Quintano E, Copertino MS, Pedersen A, Mariath R, Mangaiyarkarasi N, Pérez-Ruzafa Á, Figueroa FL, Martínez B (2014) A novel in situ system to evaluate the effect of high CO2 on photosynthesis and biochemistry of seaweeds. Aquat Biol 22:245–259

    Google Scholar 

  • Little DC, Barman BK, Belton B, Beveridge MC, Bush SJ, Dabaddle L, Demaine H, Edwards P, Haque MM, Kibria G, Morales E, Murray FJ, Leschen WA, Nandeesha MC, Sukadi F (2012) Alleviating poverty through aquaculture: progress, opportunities and improvements. In: Subasinghe RR, Arthur JR, Bartley DM, De Silva SS, Halwart M, Hishamunda N, Mohan CV, Sorgeloos P (ed) Farming the waters for people and food: proceedings of the Global Conference on Aquaculture 2010, Phuket. September 22–25, 2010, ed., 719–783. FAO and NACA, Rome/Bangkok

  • McCully M (1968) Histological studies on the genus Fucus. Protoplasma. 62:20–40

    Google Scholar 

  • Muraoka D (2004) Seaweed resources as a source of carbon fixation. Bull Jap Fish Res Edu Agency 1:59–63

    Google Scholar 

  • Nunes BG (2010) Monitoramento do ambiente do cultivo experimental da alga Kappaphycus alvarezii na praia de Sambaqui, Florianópolis/SC. Dissertation. Universidade Federal de Santa Catarina, Florianópolis, Brazil

  • Parry MAJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    CAS  PubMed  Google Scholar 

  • Pedra AGLM, Ramlov F, Maraschin M, Hayashi L (2017) Cultivation of the red seaweed Kappaphycus alvarezii with effluents from shrimp cultivation and brown seaweed extract: effects on growth and secondary metabolism. Aquaculture 479:297–303

    Google Scholar 

  • Pires CM (2017) Aproveitamento do efluente da carcinicultura de Litopenaeus vannamei em sistema biofloco pela macroalga Kappaphycus alvarezii. Dissertation Universidade Federal de Santa Catarina, Florianópolis, Brazil

  • Poppe P, Schmidt RAM, Hanelt D, Wiencke C (2003) Effects of UV radiation on the ultrastructure of several red algae. Phycol Res 51:11–19

    Google Scholar 

  • Pueschel CM (1979) Ultrastructure of tetrasporogenesis in Palmaria palmata (Rhodophyta). J Phycol 15:409–424

    Google Scholar 

  • Tee MZ, Yong YS, Rodrigues KF, Yong WTL (2015) Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales) under pH induced stress culture. Aquacult Rep 2:112–116

    Google Scholar 

  • Terada R, Vo TD, Nishihara GN, Shioya K, Shimada S, Kawaguchi S (2015) The effect of irradiance and temperature on the photosynthesis and growth of a cultivated red alga Kappaphycus alvarezii (Solieriaceae) from Vietnam, based on in situ and in vitro measurements. J Appl Phycol 28:457–467

    Article  Google Scholar 

  • Tsekos I, Orologas N, Dimopoulou A (2007) Effects of brefeldin A on the structure and function of the Golgi apparatus in the marine red alga Erythrocladia subintegra Rosenvinge. J Biol Res 7:29–39

    CAS  Google Scholar 

  • Usuldin SRA, Al-Obaidi JR, Razali N, Junit SM, Ajang MJ, Hussin SNIS, Hamid SS, Hanafi NM, Roni ANHM, Saleh NM (2017) Molecular investigation of carrageenan production in Kappaphycus alvarezii in different culture conditions: a proteomic approach. J Appl Phycol 29:1989–2001

    Article  CAS  Google Scholar 

  • Von Stosch HA (1963) Wirkung von Jod und Arsenit auf Meeresalgen in Kultur. Proc. Int. Seaweed Symp. 4:142-150.

  • Vreelan V, Kloareg B (2000) Cell wall biology in red algae: divide and conquer. J Phycol 36:793–797

    Article  Google Scholar 

  • Wakibia JG, Bolton JJ, Keats DW, Raitt LM (2006) Seasonal changes in carrageenan yield and gel properties in three commercial eucheumoids grown in southern Kenya. Bot Mar 49:208–215

    Article  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    CAS  Google Scholar 

  • Wu H, Jiang H, Liu C, Deng Y (2015) Growth, pigment composition, chlorophyll fluorescence and antioxidant defenses in the red alga Gracilaria lemaneiformis (Gracilariales, Rhodophyta) under light stress. S Afr J Bot 100:27–32

    CAS  Google Scholar 

  • Yildiz G, Dere Ş (2015) The effects of elevated-CO2 on physiological performance of Bryopsis plumosa. Acta Oceanol Sin 34:125–129

    CAS  Google Scholar 

  • Yong YS, Yong WTL, Anton A (2013) Analysis of formulae for determination of seaweed growth rate. J Appl Phycol 25:1831–1834

    Google Scholar 

  • Zou D, Gao K (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    CAS  Google Scholar 

Download references

Acknowledgements

LH thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the Productivity Fellowship (Process number 308631/2017-0). We also thank Fernando Zwierzikowski da Silva for the technical support.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Simioni.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventura, T.F.B., Bruzinga, C.P., dos Santos, A.A. et al. Addition of carbon dioxide, followed by irradiance increase, as optimization strategy for the cultivation of the red seaweed Kappaphycus alvarezii. J Appl Phycol 32, 4113–4126 (2020). https://doi.org/10.1007/s10811-020-02210-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02210-4

Keywords

Navigation