Minireview: algal natural compounds and extracts as antifoulants

Article

Abstract

Marine biofouling is a paramount phenomenon in the marine environment and causes serious problems to maritime industries worldwide. Marine algae are known to produce a wide variety of chemical compounds with antibacterial, antifungal, antialgal, and anti-macrofouling properties, inhibiting the settlement and growth of other marine fouling organisms. Significant investigations and progress have been made in this field in the last two decades and several antifouling extracts and compounds have been isolated from micro- and macroalgae. In this minireview, we have summarized and evaluated antifouling compounds isolated and identified from macroalgae and microalgae between January 2010 and June 2016. Future directions for their commercialization through metabolic engineering and industrial scale up have been discussed. Upon comparing biogeographical regions, investigations from Southeast Asian waters were found to be rather scarce. Thus, we have also discussed the need to conduct more chemical ecology based research in relatively less explored areas with high algal biodiversity like Southeast Asia.

Keywords

Algae Biofouling Natural products Antifouling defense Antibacterial Anti-diatom Anti-macrofouling 

Notes

Acknowledgements

P. Bhadury acknowledges ARF grant of IISER Kolkata.

References

  1. Abdel-Mageed WM, Ebel R, Valeriote FA, Jaspars M (2010) Laurefurenynes A–F, new cyclic ether acetogenins from a marine red alga, Laurencia sp. Tetrahedron 66:2855–2862Google Scholar
  2. Abdullahi AS, Underwood GJC, Gretz MR (2006) Extracellular matrix assembly in diatoms (Bacillariophyceae). V. Environmental effects on polysaccharide synthesis in the model diatom, Phaeodactylum tricornutum. J Phycol 42:363–378CrossRefGoogle Scholar
  3. Abida H, Ruchaud S, Rios L, Humeau A, Probert I, De Vargas C, Bach S, Bowler C (2013) Bioprospecting marine plankton. Mar Drugs 11:4594–4611PubMedPubMedCentralCrossRefGoogle Scholar
  4. Águila-Ramírez RN, Arenas-González A, Hernández-Guerrero CJ, González-Acosta B, Borges-Souza JM, Verón B, Pope J, Hellio C (2012) Antimicrobial and antifouling activities achieved by extracts of seaweeds from gulf of California, Mexico. Hidrobiológica 22(1):8–15Google Scholar
  5. Ai X-X, Liang J-R, Gao Y-H, Lo SC-L, Lee FW-F, Chen C-P, Luo C-S, Du C (2015) MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana under various nutrient conditions. J Appl Phycol 27:673–684CrossRefGoogle Scholar
  6. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Zhou SG, Allen AE, Apt KE, Bechner M et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedCrossRefGoogle Scholar
  7. Aungtonya C, Liao LM (2002) Marine flora (algae and seagrasses) in the reference collection of the Phuket marine biological center, Thailand. Phuket Mar Biol Cent. Res Bull 64:65–80Google Scholar
  8. Bagwell CE, Abernathy A, Barnwell R, Milliken CE, Noble PA, Dale T, Beauchesne KR, Moeller PDR (2016) Discovery of bioactive metabolites in biofuel microalgae that offer protection against predatory bacteria. Front Microbiol 7:516PubMedPubMedCentralCrossRefGoogle Scholar
  9. Banerjee C, Dubey KK, Shukla P (2016) Metabolic engineering of microalgal based biofuel production: Prospects and challenges. Front Microbiol 7:432PubMedPubMedCentralGoogle Scholar
  10. Batista D, Carvalho A, Costa R, Coutinho R, Dobretsov S (2014) Extracts of macroalgae from the Brazilian coast inhibit bacterial quorum sensing. Bot Mar 57:441–447CrossRefGoogle Scholar
  11. Bellas J (2006) Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci Total Environ 367:573–585PubMedCrossRefGoogle Scholar
  12. Bellinger BJ, Abdullahi AS, Gretz MR, Underwood GJC (2005) Biofilm polymers: relationship between carbohydrate biopolymers from estuarine mudflats and unialgal cultures of benthic diatoms. Aquat Microb Ecol 38:169–180CrossRefGoogle Scholar
  13. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2009) Marine natural products. Nat Prod Rep 26(2):170–244PubMedCrossRefGoogle Scholar
  14. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219:561–578PubMedCrossRefGoogle Scholar
  15. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268PubMedCrossRefGoogle Scholar
  16. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222PubMedCrossRefGoogle Scholar
  17. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2013) Marine natural products. Nat Prod Rep 30:237–323PubMedCrossRefGoogle Scholar
  18. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2014) Marine natural products. Nat Prod Rep 31:160–258PubMedCrossRefGoogle Scholar
  19. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2015) Marine natural products. Nat Prod Rep 32:116–211PubMedCrossRefGoogle Scholar
  20. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2016) Marine natural products. Nat Prod Rep 33:382–431PubMedCrossRefGoogle Scholar
  21. Bode HB, Bette B, Höfs R, Zeek A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem 3:619–627PubMedCrossRefGoogle Scholar
  22. Borowitzka MA (2013a) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  23. Borowitzka MA (2013b) Energy from microalgae: a short history. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 1–15CrossRefGoogle Scholar
  24. Borowitzka MA (2016) Chemically-mediated interactions in microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 321–357CrossRefGoogle Scholar
  25. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, Maumus F, Otillar RP et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedCrossRefGoogle Scholar
  26. Bragadeeswaran S, Prabhu K, Thangaraj K, Ganesan RS (2011a) Biological activity of seaweed extracts from Cladophora clavuligera (Kutzing, 1843) and Sargassum wightii (Greville, 1995) against marine fouling bacteria. Ind J Geo-Mar Sci 40:398–402Google Scholar
  27. Bragadeeswaran S, Thangaraj S, Prabhu K, Rani S (2011b) Antifouling activity by sea anemone (Heteractis magnifica and H. aurora) extracts against marine biofilm bacteria. Lat Am J Aquat Res 39:385–389CrossRefGoogle Scholar
  28. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fung Genet Biol 48:15–22CrossRefGoogle Scholar
  29. Brazelton WJ, Mehta MP, Kelley DS, Baross JA (2011) Physiological differentiation within a single-species biofilm fuelled by serpentinization. mBio 2:4e00127–4e00111CrossRefGoogle Scholar
  30. Buhmann M, Kroth PG, Schelheck D (2012) Photoautotrophic- heterotrophic biofilm communities: a laboratory incubator designed for growing axenic diatoms and bacteria in defined mixed-species biofilms. Environ Microb Rep 4:133–140CrossRefGoogle Scholar
  31. Buhmann MT, Poulsen N, Klemm J, Kennedy MR, Sherrill CD, Kröger N (2014) A tyrosine-rich cell surface protein in the diatom Amphora coffeaeformis identified through transcriptome analysis and genetic transformation. PLoS One 9:e110369PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cai Z, Zhu H, Duan S (2014) Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum. Oceanologia 56:639–650CrossRefGoogle Scholar
  33. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Comm 2:244CrossRefGoogle Scholar
  34. Caroppo C, Pagliara P (2011) Effects of Ostreopsis Cfr. ovata (Dinophyceae) toxicity on Paracentrotus lividus development. Biol Mar Med 18:74–76Google Scholar
  35. Carvalho AP, Batista D, Dobretsov S, Coutinho R (2017) Extracts of seaweeds as potential inhibitors of quorum sensing and bacterial growth. J Appl Phycol 29:789–797CrossRefGoogle Scholar
  36. Cen-Pacheco F, Santiago-Benítez AJ, García C, Álvarez-Méndez SJ, Martín-Rodríguez AJ, Norte M, Martín VS, Gavín JA, Fernández JJ, Daranas AH (2015) Oxasqualenoids from Laurencia viridis: combined spectroscopic-computational analysis and antifouling potential. J Nat Prod 78:712–721PubMedCrossRefGoogle Scholar
  37. Chambers LD, Stokes KR, Walsh FC, Wood RJK (2006) Modern approaches to marine antifouling coatings. Surf Coat Technol 201:3642–3652CrossRefGoogle Scholar
  38. Chambers LD, Hellio C, Stokes KR, Dennington SP, Goodes LR, Wood RJK, Walsh FC (2011) Investigation of Chondrus crispus as a potential source of new antifouling agents. Int Biodeter Biodegr 65:939–946CrossRefGoogle Scholar
  39. Chapman J, Hellio C, Sullivan T, Brown R, Russell S, Kiterringham E, Nor L, Regan F (2014) Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int Biodeter Biodegr 86:6–13CrossRefGoogle Scholar
  40. Chiovitti A, Bacic A, Burke J, Wetherbee R (2003) Heterogeneous xylose-rich glycans are associated with extracellular glycoproteins from the biofouling diatom Craspedostauros ausstralis (Bacillariophyceae). Eur J Phycol 38:351–360CrossRefGoogle Scholar
  41. Chiovitti A, Heraud P, Dugdale TM, Hodson OM, Curtain RCA, Dagastine RR, Wood BR, Wetherbee R (2008) Divalent cations stabilize the aggregation of sulfated glycoproteins in the adhesive nanofibers of the biofouling diatom Toxarium undulatum. Soft Matter 4:811–820CrossRefGoogle Scholar
  42. Cho J (2013) Antifouling chromanols isolated from brown alga Sargassum horneri. J Appl Phycol 25:299–309CrossRefGoogle Scholar
  43. Clément A, Lincoqueo L, Saldivia M, Brito CG, Muñoz F, Fernández C, Pérez F, Maluje CP, Correa N, Mondaca V, Contreras G (2016) Exceptional summer conditions and HABs of Pseudochattonella in southern Chile create record impacts on salmon farms. Harmful Algae News 53:1–4CrossRefGoogle Scholar
  44. Cortés Y, Hormazábal E, Leal H, Urzúa A, Mutis A, Parra L, Quiroz A (2014) Novel antimicrobial activity of a dichloromethane extract obtained from red seaweed Ceramium rubrum (Hudson) (Rhodophyta: Florideophyceae) against Yersinia ruckeri and Saprolegnia parasitica, agents that cause diseases in salmonids. Electron J Biotechnol 17:126–131CrossRefGoogle Scholar
  45. Courchesne NM, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141(1-2):31–41PubMedCrossRefGoogle Scholar
  46. Da Gama B, Plouguerne E, Pereira R (2014) The antifouling defence mechanisms of marine macroalgae. Adv Bot Res 71:414–440Google Scholar
  47. De Brouwer JFC, Stal LJ (2002) Daily fluctuations of exopolymers in cultures of the benthic diatoms Cylindrotheca closterium and Nitzschia sp. (Bacillariophyceae). J Phycol 38:464–472CrossRefGoogle Scholar
  48. De Morais MG, Vaz Bda S, de Morais EG, Costa JAV (2015) Biologically active metabolites synthesized by microalgae. Biomed Res Int 2015:835761PubMedPubMedCentralGoogle Scholar
  49. Desbois AP, Walton M, Smith VJ (2010) Differential antibacterial activities of fusiform and oval morphotypes of Phaeodactylum tricornutum (Bacillariophyceae). J Mar Biol Assoc U K 90:769–774CrossRefGoogle Scholar
  50. Dobretsov S, Abed Raeid MM, Teplitski M (2013) Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling 29(4):423–441PubMedCrossRefGoogle Scholar
  51. Dugdale TM, Willis A, Wetherbee R (2006) Adhesive modular proteins occur in the extracellular mucilage of the motile, pennate diatom Phaeodactylum tricornutum. Biophys J 90:58–L60CrossRefGoogle Scholar
  52. Fernández-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312CrossRefGoogle Scholar
  53. Finelli A, Gallant CV, Jarvi K, Burrows LL (2003) Use of in-biofilm expression technology to identify genes involved in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:2700–2710PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fusetani N (2011) Antifouling marine natural products. Nat Prod Rep 28:400–410PubMedCrossRefGoogle Scholar
  55. Garcia Camacho F, Gallardo Rodríguez J, Sánchez Mirón A, Cerón García MC, Belarbi EH, Chisti Y, Molina Grima E (2007) Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 25:176–194PubMedCrossRefGoogle Scholar
  56. Gerung G, Lokollo FF, Kusen JD, Harahap AP (2006) Study on the seaweeds of Ambon Island, Indonesia. Coast Mar Sci 30:162–166Google Scholar
  57. Goecke F, Labes A, Weise J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299CrossRefGoogle Scholar
  58. Gollasch S (2002) The importance of ship hull fouling as a vector of species introductions into the North Sea. Biofouling 18:105–121CrossRefGoogle Scholar
  59. Gorbi S, Bocchetti R, Binelli A, Bacchiocchi S, Orletti R, Nanetti L, Raffaelli F, Vignini A, Accoroni S, Totti C, Regoli F (2012) Biological effects of palytoxin-like compounds from Ostreopsis Cf. ovata: a multibiomarkers approach with mussels Mytilus galloprovincialis. Chemosphere 89:623–632PubMedCrossRefGoogle Scholar
  60. Gouveia V, Seca AML, Barreto MC, Pinto DCGA (2013) Mini rev. di- and sesquiterpenoids from Cystoseira genus: structure, intra-molecular transformations and biological activity. Med Chem 13:1150–1159Google Scholar
  61. Greff S, Zubia M, Genta-Jouve G, Massi L, Perez T, Thomas OP (2014) Mahorones, highly brominated cyclopentenones from the red alga Asparagopsis taxiformis. J Nat Prod 77:1150–1155PubMedCrossRefGoogle Scholar
  62. Hamilton M, Haslam R, Napier J, Sayanova O (2014) Metabolic engineering of microalgae for enhanced production of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9PubMedPubMedCentralCrossRefGoogle Scholar
  63. Harder T (2008) Marine epibiosis: concepts, ecological consequences and host defence. In: Flemming H-C, Murthy SP, Cooksey K (eds) Marine and industrial biofouling. Springer, HeidelbergGoogle Scholar
  64. Harder T (2009) Marine epibiosis: concepts, ecological consequences and host defence. Mar Ind Biofouling 4:219–231CrossRefGoogle Scholar
  65. Hattab M, Genta-Jouve G, Bouzidi N, Ortalo-Magné A, Hellio C, Maréchal J-P, Piovetti L, Thomas O, Culioli G (2015) Cystophloroketals A–E, unusual phloroglucinol–meroterpenoid hybrids from the brown alga Cystoseira tamariscifolia. J Nat Prod 78:1663–1670PubMedCrossRefGoogle Scholar
  66. Hemalatha A, Mohammed Esa SAR, Suresh M, Thajuddin N, Anantharaman P (2016) Identification of Odontella aurita by rbcl gene sequence – A high antibacterial potential centric marine diatom. Mitochondrial DNA A DNA Mapp Seq Anal 2016:1–7Google Scholar
  67. Hlavová M, Turóczy Z, Bišová K (2015) Improving microalgae for biotechnology – from genetics to synthetic biology. Biotechnol Adv 33:1194–1203PubMedCrossRefGoogle Scholar
  68. Jha B, Kavita K, Westphal J, Hartmann A, Schmitt-Kopplin P (2013) Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: separation of the compound that interrupts bacterial communication. Mar Drugs 11:253–265PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kamada T, Vairappan CS (2012) A new bromoallene-producing chemical type of the red alga Laurencia nangii Masuda. Molecules 17:2119–2125PubMedCrossRefGoogle Scholar
  70. Kanai Y, Hiroki S, Koshino H, Konoki K, Cho Y, Cayme M, Fukuyo Y, Yotsu-Yamashita M (2011) Identification of novel oxidized levuglandin D in marine red alga and mouse tissue. J Lipid Res 52(12):2245–2254PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kawaguchi S, Hayashizaki K-I (2011) Biodiversity studies on seaweeds and sea grasses in the coastal waters of Southeast Asia (Project-3: Seaweed/ seagrass Group). In: Nishida S, Fortes MD, Miyazaki N (eds) Coastal Marine Science in Southeast Asia - Synthesis Report of the Core University Program of the Japan Society for the Promotion of Science: Coastal Marine Science (2001–2010), pp 49–57Google Scholar
  72. Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochemie 93:91–100CrossRefGoogle Scholar
  73. Kröger N, Poulsen P (2008) Diatoms- from cell wall biogenesis to nanotechnology. Annu Rev Genet 42:83–107PubMedCrossRefGoogle Scholar
  74. Ktari L, Ismail-Ben Ali A, Ben Redjem Y, Langar H, El Bour M (2010) Antifouling activity and chemical investigation of the brown alga Dictyota fasciola (Dictyotales) from Tunisian coast. Cah Biol Mar 51:109–115Google Scholar
  75. Lachnit T, Fischer M, Künzel S, Baines J, Harder T (2013) Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol Ecol 84:411–420PubMedCrossRefGoogle Scholar
  76. Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A (2016) Bioactivity Screening of Microalgae for Antioxidant, Anti-Inflammatory, Anticancer, Anti-Diabetes, and Antibacterial Activities. Frontiers in Marine. Science 3:1–12Google Scholar
  77. Li Y, Sommerfeld M, Chen F, Hu Q (2008) Consumption of oxygen by astaxanthin biosynthesis: a protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J Plant Physiol 165:1783–1797PubMedCrossRefGoogle Scholar
  78. Lind JL, Heimann K, Miller EA, van Vliet C, Hoogenraad NJ, Wetherbee R (1997) Substratum adhesion and gliding in a diatom are mediated by extracellular proteoglycans. Planta 203:213–221PubMedCrossRefGoogle Scholar
  79. Ma H, Krock B, Tillmann U, Bickmeyer U, Graeve M, Cembella A (2011) Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense. Toxicon 58:247–258PubMedCrossRefGoogle Scholar
  80. Magaletti E, Urbani R, Sist P, Cicero AM (2014) Abundance and chemical characterization of extracellular carbohydrates released by the marine diatom Cylindrotheca fusiformis under N- and P-limitation. Eur J Phycol 39:133–142CrossRefGoogle Scholar
  81. Maréchal J-P, Hellio C (2009) Challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci 10:4623–4637PubMedPubMedCentralCrossRefGoogle Scholar
  82. Maréchal J-P, Hellio C (2011) Antifouling activity against barnacle cypris larvae: do target species matter (Amphibalanus amphitrite versus Semibalanus balanoides)? Int Biodeter Biodegr 65:92–101CrossRefGoogle Scholar
  83. Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S (2016) Tiny microbes with a big impact: The role of Cyanobacteria and their metabolites in shaping our future. Mar Drugs 14(5):97PubMedCentralCrossRefGoogle Scholar
  84. Molina-Cárdenas CA, Sánchez-Saavedra MP, Lizárraga-Partida ML (2014) Inhibition of pathogenic Vibrio by the microalgae Isochrysis galbana. J Appl Phycol 26:2347–2355CrossRefGoogle Scholar
  85. Molino PJ, Wetherbee R (2008) The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling 24:365–379PubMedCrossRefGoogle Scholar
  86. Montalvaõ S, Demirel Z, Devi P, Lombardi V, Hongisto V, Perälä M, Hattara J, Imamoglu E, Shet Tilvi S, Turan G, Conk Dalay M, Tammela P (2016) Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. Nat Biotechnol 33:399–406Google Scholar
  87. Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697PubMedPubMedCentralCrossRefGoogle Scholar
  88. Natrah FMI, Muta Harah Z, Japar Sidik B, Izzatul NMS, Syahida A (2015) Antibacterial activities of selected seaweed and seagrass from port Dickson coastal water against different aquaculture pathogens. Sains Malaysiana 44(9):1269–1273CrossRefGoogle Scholar
  89. Nguyen VT, Le NH, Lin SM, Steen F, De Clerck O (2013) Checklist of the marine macroalgae of Vietnam. Bot Mar 56:207–227Google Scholar
  90. Orr RJS, Stüken A, Murray SA, Jakobsen KS (2013) Evolution and distribution of saxitoxin biosynthesis in dinoflagellates. Mar Drugs 11:2814–2828PubMedPubMedCentralCrossRefGoogle Scholar
  91. Othmani A, Bouzidi N, Viano Y, Alliche Z, Seridi H, Blache Y, El Hattab M, Briand J-F, Culioli G (2014) Anti-microfouling properties of compounds isolated from several Mediterranean Dictyota spp. J Appl Phycol 26:1573–1584Google Scholar
  92. Othmani A, Bunet R, Bonnefont J, Briand JF, Culioli G (2015) Settlement inhibition of marine biofilm bacteria and barnacle larvae by compounds isolated from the Mediterranean brown alga Taonia atomaria. J Appl Phycol 28:1975–1986CrossRefGoogle Scholar
  93. Paradas WC, Tavares Salgado L, Pereira RC, Hellio C, Atella GC, de Lima Moreira D, do Carmo AP, Soares AR, Menezes Amado-Filho G (2016) A novel antifouling defense strategy from red seaweed: exocytosis and deposition of fatty acid derivatives at the cell wall surface. Plant Cell Physiol 57:1008–1019PubMedCrossRefGoogle Scholar
  94. Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pereira RC, Costa-Lotufo LV (2012) Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives. Rev Bras Farmacogn 22:894–905CrossRefGoogle Scholar
  96. Perez Garcia O, Bashan Y (2015) In: Prokop A, Bajpai RK, Zappi ME (eds) Algal biorefineries Vol. 2: products and refinery design. Springer, BerlinGoogle Scholar
  97. Persson F, Svensson R, Nylund GM, Fredriksson NJ, Pavia H, Hermansson M (2011) Ecological role of a seaweed secondary metabolite for a colonizing bacterial community. Biofouling 27:579–588PubMedCrossRefGoogle Scholar
  98. Phang S-M, Mustafa EM, Rao Ambati R, Sulaiman NMN, Lim P-E, Majid NA, Dommange X, Schwob C, Liew K-E (2015) Checklist of microalgae collected from different habitats in peninsular Malaysia for selection of algal biofuel feedstocks. Malays J Sci 34:141–167Google Scholar
  99. Piazza V, Roussis V, Garaventa F, Greco G, Smyrniotopoulos V, Vagias C, Faimali M (2011) Terpenes from the red alga Sphaerococcus coronopifolius inhibit the settlement of barnacles. Mar Biotechnol 13:764–772PubMedCrossRefGoogle Scholar
  100. Plouguerné E, Hellio C, Cesconetto C, Thabard M, Mason K, Véron B, Pereira RC, Gama BA (2010a) Antifouling activity as a function of population variation in Sargassum vulgare from the littoral of Rio de Janeiro. J Appl Phycol 22:717–724CrossRefGoogle Scholar
  101. Plouguerné E, Ioannou E, Georgantea P, Vagias C, Roussis V, Hellio C, Kraffe E, Stiger-Pouvreau V (2010b) Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo) fensholt. Mar Biotechnol 12:52–61PubMedCrossRefGoogle Scholar
  102. Plouguerné E, Cesconetto C, Cruz CP, Pereira RC, da Gama BAP (2012) Within-thallus variation in polyphenolic content and antifouling activity in Sargassum vulgare. J Appl Phycol 24:1629–1635CrossRefGoogle Scholar
  103. Poulson KL, Sieg RD, Prince EK, Kubanek J (2010) Allelopathic compounds of a red tide dinoflagellate have species-specific and context-dependent impacts on phytoplankton. Mar Ecol Prog Ser 416:69–78CrossRefGoogle Scholar
  104. Poulson-Ellestad K, McMillan E, Montoya JP, Kubanek J (2014) Are offshore phytoplankton susceptible to Karenia brevis allelopathy? J Plankton Res 36:1344–1356CrossRefGoogle Scholar
  105. Prince EK, Poulson KL, Myers TL, Sieg RD, Kubanek J (2010) Characterization of allelopathic compounds from the red tide dinoflagellate Karenia brevis. Harmful Algae 10:39–48CrossRefGoogle Scholar
  106. Proksch P, Edrada-Ebel RA, Ebel R (2003) Drugs from the sea - opportunities and obstacles. Mar Drugs 1:5–17PubMedCentralCrossRefGoogle Scholar
  107. Qian P-Y, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234PubMedCrossRefGoogle Scholar
  108. Qin JG, D’Antignana T, Zhang W, Franco C (2013) Discovery of antimicrobial activities of a marine diatom Thalassiosira rotula. Afr J Microbiol Res 7:5687–5696CrossRefGoogle Scholar
  109. Quijano-Scheggia S (2016) The inhibitory effect of a non-yessotoxin-producing dinoflagellate, Lingulodinium polyedrum (stein) dodge, towards Vibrio vulnificus and Staphylococcus aureus. Rev Biol Trop 64:805–816CrossRefGoogle Scholar
  110. Radakovits R, Jinkerson RE, Darzins A, Posewitz MS (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501PubMedPubMedCentralCrossRefGoogle Scholar
  111. Rajan R, Meena K, Ralraj S, Subramanian G (2015) Studies on the anticorrosive and antifouling properties of the Gracilaria edulis extract incorporated epoxy paint in the Gulf of Mannar coast, Mandapam, India. Prog Org Coat 90:448–454CrossRefGoogle Scholar
  112. Ralston E, Swain G (2009) Bioinspiration: the solution for biofouling control? Bioinspir Biomim 4(1):015007PubMedCrossRefGoogle Scholar
  113. Rolton A, Vignier J, Soudant P, Shumway SE, Bricelj VM, Volety AK (2014) Effects of the red tide dinoflagellate, Karenia brevis, on early development of the eastern oyster Crassostrea virginica and northern quahog Mercenaria mercenaria. Aquat Toxicol 155:199–206PubMedCrossRefGoogle Scholar
  114. Ruffing AM (2011) Engineered cyanobacteria: teaching an old bug new tricks. Bioeng Bugs 2:136–149PubMedCrossRefGoogle Scholar
  115. Saburova MA, Polikarpov IG, Burkovsky IV (1995) Spatial structure of an intertidal sandflat microphytobenthic community as related to different spatial scales. Mar Ecol Prog Ser 129:229–239CrossRefGoogle Scholar
  116. Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F (2011) Surface-associated fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. Biofouling 27:423–433PubMedCrossRefGoogle Scholar
  117. Saha M, Rempt M, Gebser B, Grueneberg J, Pohnert G, Weinberger F (2012) Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment. Biofouling 28:37–41CrossRefGoogle Scholar
  118. Saha M, Rempt M, Stratil SB, Wahl M, Pohnert G, Weinberger F (2014) Defence chemistry modulation by light and temperature shifts and the resulting effects on associated epibacteria of Fucus vesiculosus. PLoS One 9(10):e105333PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sala-Pérez M, Alpermann TJ, Krock B, Tillmann U (2016) Growth and bioactive secondary metabolites of arctic Protoceratium reticulatum (Dinophyceae). Harmful Algae 55:85–96PubMedCrossRefGoogle Scholar
  120. Salta M, Wharton JA, Dennington SP, Stoodley P, Stokes KR (2013) Anti-biofilm performance of three natural products against initial bacterial attachment. Int J Mol Sci 14(11):21757–21780PubMedPubMedCentralCrossRefGoogle Scholar
  121. Scardino AJ, de Nys R (2011) Mini review: biomimetic models and bioinspired surfaces for fouling control. Biofouling 27:73–86PubMedCrossRefGoogle Scholar
  122. Seed R (1985) Ecological pattern in the epifaunal communities of coastal macroalgae. In: Moore PG, Seed R (eds) The ecology of rocky coasts. Hodder and Stoughton, London, pp 22–35Google Scholar
  123. Selig ER, Turner WR, Troëng S, Wallace BP, Halpern BS, Kaschner K, Lascelles BG, Carpenter KE, Mittermeier RA (2014) Global priorities for marine biodiversity conservation. PLoS One 9(1):e82898PubMedPubMedCentralCrossRefGoogle Scholar
  124. Seth AK, Geringer MR, Hong SJ, Leung KP, Galiano RD, Mustoe TA (2012) Comparative analysis of single-species and polybacterial wound biofilms using a quantitative, in vivo, rabbit ear model. PLoS One 7:e42897PubMedPubMedCentralCrossRefGoogle Scholar
  125. Satheesh S, Ba-akdah MA, Al-Sofyani AA (2016) Natural antifouling compound production by microbes associated with marine macroorganisms — A review. E J Biotech 21:26–35Google Scholar
  126. Sidharthan M, Shin HW, Joo JH (2004) Fouling coverage of a green tide alga, Ulva pertusa on some antifouling test surfaces exposed to Ayagin harbor waters, east coast of South Korea. J Environ Biol 25:39–43PubMedGoogle Scholar
  127. Siless GE, García M, Pérez M, Blustein G, Palermo JA (2017) Large-scale purification of pachydictyol a from the brown alga Dictyota dichotoma obtained from algal wash and evaluation of its antifouling activity against the freshwater mollusk Limnoperna fortunei. J Appl Phycol.  https://doi.org/10.1007/s10811-017-1261-9
  128. Silkina A, Bazes A, Mouget L, Bourgaugnon N (2012) Comparative efficiency of macroalgal extracts and booster biocides as antifouling agents to control growth of the diatom species. Mar Pollut Bull 64:2039–2046PubMedCrossRefGoogle Scholar
  129. Silva GC, Albuquerque-Costa R, Oliveira-Peixoto JR, Pessoa-Nascimento FE, de Macedo-Carneiro PB, Silva dos Fernandes-Vieira RH (2013) Tropical Atlantic marine macroalgae with bioactivity against virulent and antibiotic resistant Vibrio. Lat Am J Aquat Res 41:183–188CrossRefGoogle Scholar
  130. Singh R, Kumari P, Reddy C (2015) Antimicrobial compounds from seaweeds-associated bacteria and fungi. Appl Microbiol Biotechnol 99:1571–1586PubMedCrossRefGoogle Scholar
  131. Sneed JM, Pohnert G (2011a) The green alga Dicytosphaeria ocellata and its organic extracts alter natural bacterial biofilm communities. Biofouling 27:347–356PubMedCrossRefGoogle Scholar
  132. Sneed JM, Pohnert G (2011b) The green macroalga Dictyosphaeria ocellata influences the structure of the bacterioplankton community through differential effects on individual bacterial phylotypes. FEMS Microbiol Ecol 75:242–254PubMedCrossRefGoogle Scholar
  133. Soe-Htun U, Wai MK, Nyunt T, Kyaw SPP, Htay YY, Aye MM (2009) Checklist, distribution and potential utilization of marine algae of Myanmar I: Chlorophyta (green algae) and Phaeophyta (brown algae). J Myanmar Acad Arts Sci 7:263–277Google Scholar
  134. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 1001:87–96Google Scholar
  135. Srikong W, Mittraparp-arthorn P, Rattanaporn O, Bovornreungroj N, Bovornreungroj P (2015) Antimicrobial activity of seaweed extracts from Pattani, Southeast coast of Thailand. Food Appl Biosci J 3:39–49Google Scholar
  136. Staats N, De Winder B, Stal LJ, Mur LR (1999) Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. Eur J Phycol 34:161–169CrossRefGoogle Scholar
  137. Sumper M, Brunner E (2008) Silica biomineralisation in diatoms: the model organism Thalassiosira pseudonana. Chem Bio Chem 9:1187–1194PubMedCrossRefGoogle Scholar
  138. Sun Y-Y, Wang H, Guo G-l, Pu Y-F, Yan B-L, Wang C-H (2015) Green alga Ulva pertusa—a new source of bioactive compounds with antialgal activity. Environ Sci Pollut Res 22:10351–10359CrossRefGoogle Scholar
  139. Thabard M, Gros O, Hellio C, Maréchal JP (2011) Sargassum polyceratium (Phaeophyceae, Fucaceae) surface molecule activity towards fouling organisms and embryonic development of benthic species. Bot Mar 54:147–157CrossRefGoogle Scholar
  140. Thompson SEM, Taylor AR, Brownlee C, Callow ME, Callow JA (2008) The role of nitric oxide in diatom adhesion in relation to substratum properties. J Phycol 44:967–976PubMedCrossRefGoogle Scholar
  141. Todd PA, Ong X, Chou LM (2010) Impacts of pollution on marine life in Southeast Asia. Biodivers Conserv 19:1063–1082CrossRefGoogle Scholar
  142. Ugoala E, Ndukwe GI, Mustapha KB, Ayo RI (2012) Contraints to large scale algae biomass production and utilization. J Algal Biomass Utln 3:14–32Google Scholar
  143. Umezawa T, Oguri Y, Matsuura H, Yamazaki S, Suzuki M, Yoshimura E, Furuta T, Nogata Y, Serisawa Y, Matsuyama-Serisawa K, Abe T, Matsuda F, Suzuki M, Okino T (2014) Omaezallene from red alga Laurencia sp.: structure elucidation, total synthesis, and antifouling activity. Angew Chem 53:3909–3912CrossRefGoogle Scholar
  144. Vairappan CS, Suzuki M, Ishii T, Okino T, Abe T, Masuda M (2008) Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry 69(13):2490–2494PubMedCrossRefGoogle Scholar
  145. Van Alstyne KL, Harvey EL, Cataldo M (2014) Effects of dopamine, a compound released by the green-tide macroalga Ulvaria obscura (Chlorophyta), on marine algae and invertebrate larvae and juveniles. Phycologia 53:195–202CrossRefGoogle Scholar
  146. Vanelslander B, Paul C, Grueneberg J et al (2012) Daily bursts of biogenic cyanogen bromide (BrCN) control biofilm formation around a marine benthic diatom. Proc Nat Acad Sci 109:2412–2417PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vardi A, Bidle KD, Kwityn C, Hirsh DJ, Thompson SM, Callow JA, Falkowski P, Bowler C (2008) A diatom gene regulating nitric-oxide signaling and susceptibility to diatom-derived aldehydes. Curr Biol 18:895–899PubMedCrossRefGoogle Scholar
  148. Wafar M, Venkataraman K, Ingole B, Ajmal Khan S, LokaBharathi P (2011) State of knowledge of coastal and marine biodiversity of Indian Ocean countries. PLoS One 6:e14613PubMedPubMedCentralCrossRefGoogle Scholar
  149. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar Ecol Prog Ser 58:175–189CrossRefGoogle Scholar
  150. Wahl M (2008) Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24:427–438PubMedCrossRefGoogle Scholar
  151. Wahl M (2009) Epibiosis : ecology, effects and defences sessile mode of life. In: Wahl M (ed) Marine hard bottom communities. Springer, Cham pp 61–72Google Scholar
  152. Wahl M, Shahnaz L, Dobretsov S, Saha M, Symanowski F, David K, Lachnit T, Vasel M, Weinberger F (2010) Ecology of antifouling resistance in the bladder wrack Fucus vesiculosus: patterns of microfouling and antimicrobial protection. Mar Ecol Prog Ser 411:33–48CrossRefGoogle Scholar
  153. Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F (2012) The second skin: ecological role of epibiotic biofilms on marine organisms. Front Microbiol 3:292PubMedPubMedCentralCrossRefGoogle Scholar
  154. Waite JH, Tanzer ML (1981) Polyphenolic substance of Mytilus edulis: novel adhesive containing L-Dopa and hydroxyproline. Science 212:1038–1040PubMedCrossRefGoogle Scholar
  155. Webb CO, Slik JWF, Triono T (2010) Biodiversity inventory and informatics in Southeast Asia. Biodivers Conserv 19:955–972CrossRefGoogle Scholar
  156. Wijesinghe WA, Kim EA, Kang MC, Lee WW, Lee HS, Vairappan CS, Jeon YJ (2014) Assessment of antiinflammatory effect of 5β-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ Toxicol Pharmacol 37(1):110–117PubMedCrossRefGoogle Scholar
  157. Wijffels RH (2007) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26:26–31PubMedCrossRefGoogle Scholar
  158. Willis A, Eason-Hubbard M, Hodson O, Maheswari U, Bowler C, Wetherbee R (2014) Adhesion molecules from the diatom Phaeodactylum tricornutum (Bacillariophyceae): genomic identification by amino-acid profiling and in vivo analysis. J Phycol 50:837–849PubMedCrossRefGoogle Scholar
  159. Wustman BA, Gretz MR, Hoagland KD (1997) Extracellular matrix in diatoms (Bacillariophyceae). A model of adhesives based on chemical characterization and localization of polysaccharides from the marine diatom Achnanthes longipes and other diatoms. Plant Physiol 133:1059–1069CrossRefGoogle Scholar
  160. Yamada KM, Geiger B (1997) Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 9:76–85PubMedCrossRefGoogle Scholar
  161. Zhao H, Waite JH (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J Biol Chem 281:26150–26158PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Mahasweta Saha
    • 1
    • 2
  • Franz Goecke
    • 3
  • Punyasloke Bhadury
    • 4
  1. 1.Benthic EcologyHelmholtz Center for Ocean ResearchKielGermany
  2. 2.School of Biological ScienceUniversity of EssexColchester, CO 43 SQUK
  3. 3.Department of Plant and Environmental Science (IPV)Norwegian University of Life Sciences (NMBU)ÅsNorway
  4. 4.Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological SciencesIndian Institute of Science Education and Research KolkataNadiaIndia

Personalised recommendations