Skip to main content
Log in

Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacterium aponinum is a thermotolerant cyanobacterium species isolated from different thermal springs and showing potential therapeutic application thanks to the synthesis and release of exopolysaccharides with anti-inflammatory and immunomodulating properties. This work investigates the effects of temperature and light on growth rate, biomass yield, and released polysaccharides (RPS) synthesis in C. aponinum cultures. The highest biomass productivity was obtained at 40 °C (about 92 mg L−1 d−1), while the highest RPS synthesis rate (about 10 mg L−1 d−1) was detected at 35 °C. At this temperature, the influence of light intensities, between 15 and 650 μmol photons m−2 s−1, was also evaluated. C. aponinum showed the highest productivity in biomass (about 280 mg L−1 d−1) and RPS (about 20 mg L−1 d−1) at 500 μmol photons m−2 s−1. Interestingly, this strain also had the ability to accumulate other high-value compounds such as phycocyanin, zeaxanthin, and β-carotene suggesting that C. aponinum can be used for the industrial production of multiple molecules of biotechnological interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abed RMM, Dobretsov S, Sudesh K (2009) Applications of cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Alcantara S, Sanchez S (1999) Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis. J Ind Microbiol Biotechnol 23:697–700

    Article  CAS  PubMed  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaption in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnefond H, Moelants N, Talec A, Mayzaud P, Bernard O, Sciandra A (2017) Coupling and uncoupling of triglyceride and beta-carotene production by Dunaliella salina under nitrogen limitation and starvation. Biotechnol Biofuels 10:1–10

    Article  Google Scholar 

  • Chi Z, Elloy F, Xie Y, Hu Y, Chen S (2014) Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Appl Biochem Biotechnol 172:447–457

    Article  CAS  PubMed  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22:151–175

    Article  CAS  Google Scholar 

  • De Philippis R, Vincenzini M (2003) Outermost polysaccharidic investments of cyanobacteria: nature, significance and possible applications. Recent Res Dev Microbiol 7:13–22

    CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ducat DC, Way JC, Silver PA (2011) Engineering cyanobacteria to generate high-value products. Trends Biotechnol 29:95–103

    Article  CAS  PubMed  Google Scholar 

  • Ehling-Schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  CAS  PubMed  Google Scholar 

  • Färber A, Jahns P (1998) The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. Biochim Biophys Acta Bioenerg 1363:47–58

    Article  Google Scholar 

  • Fiali Mouhim R, Cornet J-F, Fontane T, Fournet B, Dubertret G (1993) Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol Lett 15:567–572

    Article  Google Scholar 

  • Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E (2014) Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol 172:2377–2389

    Article  CAS  PubMed  Google Scholar 

  • Gudmundsdottir AB, Omarsdottir S, Brynjolfsdottir A, Paulsen BS, Olafsdottir ES, Freysdottir J (2015) Exopolysaccharides from Cyanobacterium aponinum from the blue Lagoon in Iceland increase IL-10 secretion by human dendritic cells and their ability to reduce the IL-17+RORγt+/IL-10+FoxP3+ ratio in CD4+ T cells. Immunol Lett 163:157–162

    Article  CAS  PubMed  Google Scholar 

  • Han PP, Sun Y, Jia SR, Zhong C, Tan ZL (2014) Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydr Polym 105:145–151

    Article  CAS  PubMed  Google Scholar 

  • Karatay SE, Donnmez G (2011) Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl Energy 88:3632–3635

    Article  CAS  Google Scholar 

  • Kumar M, Kulshreshtha J, Pal Singh G (2011) Growth and biopigment accumulation of cyanobacterium Spirulina platensis at different light intensities and temperature. Brazilian J Microbiol 42:1128–1135

    Article  CAS  Google Scholar 

  • La Rocca N, Moro I, Rascio N (2016) Excess light and limited carbon two problems that cyanobacteria and microalgae have to cope with. In: Pessarakli M (ed) Handbook of photosynthesis. CRC Press, Boca Raton, pp 349–368

    Google Scholar 

  • Lau NS, Matsui M, Abdullah AAA (2015) Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res Int 2015:1–9

    Article  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012) Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol 28:2661–2670

    Article  CAS  PubMed  Google Scholar 

  • Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202

    Article  CAS  PubMed  Google Scholar 

  • Moro I, Rascio N, Di Bella M, Andreoli C, La Rocca N (2007) Cyanobacterium aponinum, a new Cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy). Arch Hydrobiol Suppl Algol Stud 123:1–15

    CAS  Google Scholar 

  • Mota R, Guimarães R, Büttel Z, Rossi F, Colica G, Silva CJ, Santos C, Gales L, Zille A, De Philippis R, Pereira SB, Tamagnini P (2013) Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr Polym 92:1408–1415

    Article  CAS  PubMed  Google Scholar 

  • Nicolaus B, Panico A, Lama L, Romano I, Manca MC, De Giulio A, Gambacorta A (1999) Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry 52:639–647

    Article  CAS  Google Scholar 

  • Nikulin SM (2011) Student test. Encyclopedia of Mathematics. URL: http://www.encyclopediaofmath.org/index.php?title=Student_test&oldid=17068. Accessed 24 February 2017.

  • Paliwal C, Pancha I, Ghosh T, Maurya R, Chokshi K, Bharadwaj VSV, Ram S, Mishra S (2015) Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501. Bioresour Technol 197:363–368

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941

    Article  CAS  PubMed  Google Scholar 

  • Petusdottir SK, Solveig K, Bjornsdottir SH, Hreggvidsson GO, Hjorleifsdottir S, K J (2009) Analysis of the unique geothermal microbial ecosystemof the Blue Lagoon. FEMS Microbiol Ecol 70:425–432

    Article  Google Scholar 

  • Piven I, Friedrich A, Duhring U, Baier K, Inaba M, Shi T, Wang K, Enke H, Kramer D (2014) Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures. US Patent Application 0178973 A1

  • Prasanna R, Sood a, Jaiswal P, Nayak S, Gupta V, Chaudhary V, Joshi M, Natarajan C (2010) Rediscovering cyanobacteria as valuable sources of bioactive compounds. Prikl Biokhim Mikrobiol 46:133–147

    CAS  PubMed  Google Scholar 

  • Rascio N, La Rocca N (2013) Biological nitrogen fixation. In: Elias SA (ed) Reference module in earth systems and environmental sciences. Elsevier, Amsterdam, The Netherlands, pp 412–419

  • Richert L, Golubic S, Le Guédès R, Ratiskol J, Payri C, Guezennec J (2005) Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr Microbiol 51:379–384

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  • Setyoningrum TM, Nur MMA (2015) Optimization of C-phycocyanin production from S. platensis cultivated on mixotrophic condition by using response surface methodology. Biocatal Agric Biotechnol 4:603–607

    Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25:73–95

    Article  CAS  PubMed  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystems, and environmental sustainability. Front Microbiol 7:1–19

    CAS  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Thawornwiriyanum P, Tanasupawat S, Dechsakulwatana C, Techkarnjanaruk S, Suntornsuk W (2012) Identification of newly zeaxanthin-producing bacteria isolated from sponges in the Gulf of Thailand and their zeaxanthin production. Appl Biochem Biotechnol 167:2357–2368

    Article  Google Scholar 

  • Weiss A, Johannisbauer W, Gutsche B, Cordero BF, Martin L, Rodriguez H, Vargas MA, Obraztsova I (2007) Process for obtaining zeaxanthin from algae. US Patent 2007/0190595 A1

  • Winckelmann D, Bleeke F, Bergmann P, Klöck G (2015) Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature. 3 Biotech 5:253–260

    Article  PubMed  Google Scholar 

  • Winckelmann D, Bleeke F, Bergmann P, Elle C, Klöck G (2016) Detection of weed algae in open pond cultures of Cyanobacterium aponinum using PAM. Int Aquat Res 8:81–90

    Article  Google Scholar 

  • Xie Y, Jin Y, Zeng X, Chen J, Lu Y, Jing K (2015) Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresour Technol 180:281–287

    Article  CAS  PubMed  Google Scholar 

  • Yan R, Zhu D, Zhang Z, Zeng Q, Chu J (2012) Carbon metabolism and energy conversion of Synechococcus sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J Appl Phycol 24:657–668

    Article  CAS  Google Scholar 

  • Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133

    Article  CAS  Google Scholar 

  • Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB (2015) Synechoccus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Sci Rep 5:1–10

Download references

Acknowledgements

This work was supported by funds from Progetto di Ateneo (PRAT) 2011, University of Padova “High-value compound production by photo-oxygenic microorganisms under selected growth conditions” (grant no. CPDA113758) and Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) 2012 “Improving biofuels and high added value molecules production from unicellular algae” (grant no. 2012XSAWYM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicoletta La Rocca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gris, B., Sforza, E., Morosinotto, T. et al. Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum . J Appl Phycol 29, 1781–1790 (2017). https://doi.org/10.1007/s10811-017-1133-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1133-3

Keywords

Navigation