Skip to main content
Log in

The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Cyanobacteria are recognized as producers of bioactive substances and phycobiliproteins, whose medicinal and functional food properties have led to increased interest in recent years. In the present study, the biomass production and phycobiliprotein content in cyanobacterial strains belonging to Anabaena, Nostoc and Spirulina genera were investigated under the conditions of continuous illumination and mixotrophic nutrition. The results showed that biomass production was strongly stimulated by continuous light in Spirulina strains (4.5-fold), and by organic carbon sources in N2-fixing strains (2.1–2.8-fold). The strategy of cells to accumulate primarily blue pigment phycocyanin and bluish green allophycocyanin was revealed under tested conditions. Furthermore, in the case of Spirulina S1 grown with glycerol, the culture medium became dense and changed its colour to pink, which may indicate the release of compounds including pigment(s) outside the cell, the phenomenon that seem to be rare among cyanobacteria. Moreover, under continuous light, in this strain the highest biomass level of 4.0 mg/mL was achieved, wherein phycocyanin and allophycocyanin content was increased 12- and 16-fold, respectively, which indicates the high potential of this strain for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chisti, Y., Biotechnol. Adv., 2007, vol. 25, no. 3, pp. 294–306.

    Article  CAS  PubMed  Google Scholar 

  2. Andrade, M.R. and Costa, J.A.V., Aquaculture, 2007, vol. 264, nos. 1–4, pp. 130–134.

    Article  Google Scholar 

  3. Kong, W., Hong, Y., Yun-Tao, C., Hao, S., Shao-Feng, H., and Chun-G., X., Food Technol. Biotechnol., 2013, vol. 51, no. 1, pp. 62–69.

    CAS  Google Scholar 

  4. Yu, H., Jia, S., and Dai, Y., J. Appl. Phycol., 2009, vol. 21, no. 1, pp. 127–133.

    Article  CAS  Google Scholar 

  5. Bhatnagar, A., Chinnasamy, S., Singh, M., and Das, K.C., Appl. Energ., 11, vol. 88, no. 10, pp. 3425–3431.

  6. Yu, G., Shi, D., Cai, Z., Cong, W., and Ouyang, F., Chinese J. Chem. Eng., 2011, vol. 19, no. 1, pp. 108–115.

    Article  CAS  Google Scholar 

  7. Grossman, A.R., Bhaya, D., and He, Q., J. Biol. Chem., 2001, vol. 276, no. 15, pp. 11449–11452.

    Article  CAS  PubMed  Google Scholar 

  8. Stadnichuk, I.N. and Tropin, I.V., Appl. Biochem. Microbiol., 2017, vol. 53, no. 1, pp. 1–10.

    Article  CAS  Google Scholar 

  9. Chaneva, G., Furnadzhieva, S., Minkova, K., and Lukavsky, J., J. Appl. Phycol., 2007, vol. 19, no. 5, pp. 537–544.

    Article  CAS  Google Scholar 

  10. Simeunović, J., Marković, S., Kovač, D., Mišan, A., Mandić, A., and Svirčev, Z., Food Feed Res., 2012, vol. 39, pp. 23–31.

    Google Scholar 

  11. Markou, G. and Georgakakis, D., Appl. Energ., 2011, vol. 88, pp. 3389–3401.

    Article  CAS  Google Scholar 

  12. Özyur., G., Uslu, L., Yuvka, I., Gökdogan, S., Atci, G., Ak, B., and Isik, O., J. Food Qual., 2015, vol. 38, no. 4, pp. 268–272.

    Article  Google Scholar 

  13. Khajepour, F., Hosseini, S.A., Nasrabadi, R.G., and Markou, G., Appl. Biochem. Biotechnol., 2015, vol. 176, no. 8, pp. 2279–2289.

    Article  CAS  PubMed  Google Scholar 

  14. Prasanna, R., Pabby, A., Saxena, S., and Singh, P.K., J. Plant Physiol., 2004, vol. 161, no. 10, pp. 1125–1132.

    Article  CAS  PubMed  Google Scholar 

  15. Safafar, H., Wagenen, J., Møller, P., and Jacobsen, C., Mar. Drugs, 2015, vol. 13, no. 12, pp. 7339–7356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Becker, E.W., Microalgae: Biotechnology and Microbiology, Cambridge: Cambridge University Press, 1994.

    Google Scholar 

  17. Simeunović, J., Bešlin, K., Svirčev, Z., Kovač, D., and Babić, O., J. Appl. Phycol., 2013, vol. 25, no. 2, pp. 597–607.

    Article  Google Scholar 

  18. Chen, T., Zheng, W., Yang, F., Bai, Y., and Wong, Y., Enzyme Microb. Technol., 2006, vol. 39, no. 1, pp. 103–107.

    Article  CAS  Google Scholar 

  19. Kepekçi, R.A. and Saygideger, S.D., J. Appl. Phycol., 2012, vol. 24, no. 4, pp. 897–905.

    Article  Google Scholar 

  20. De Chaza., N.M. and Smith, G.D., Microbiology, 1994, vol. 140, pp. 3183–3189.

    Article  Google Scholar 

  21. Sun, Y.N., Wu, D., Zhou, M., and Zhao, K.H., Acta Hydrobiol. Sin., 2004, vol. 28, no. 3, pp. 275–278.

    CAS  Google Scholar 

  22. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y., J. Gen. Microbiol., 1979, vol. 111, pp. 1–61.

    Google Scholar 

  23. Ogawa, T. and Terui, G., J. Ferment. Technol., 1970, vol. 48, pp. 361–367.

    Google Scholar 

  24. Mackinney, G., J. Biol. Chem., 1941, vol. 140, pp. 315–322.

    CAS  Google Scholar 

  25. APHA, Standard Methods for the Examination of Waste and Wastewater, Washington: American Public Health Association, 1992.

  26. Bennett, A. and Bogorad, L., J. Cell Biol., 1973, vol. 58, no. 2, pp. 419–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jacob-Lopes, E., Scoparo, C.H.G., Lacerda, L., and Franco, T.T., Chem. Eng. Process., 2009, vol. 48, no. 1, pp. 306–310.

    Article  CAS  Google Scholar 

  28. Toxic Cyanobacteria in Water, Chorus, I. and Bartram, J., Eds., London: E. and F.N. Spon, 1999.

  29. Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A., and Raherimandimby, M., J. Chem. Technol. Biot., 2008, vol. 83, no. 6, pp. 842–848.

    Article  CAS  Google Scholar 

  30. Feng, X., Bandyopadhyay, A., Berla, B., Page, L., Wu, B., Pakrasi, H.B., and Tang, Y.J., Microbiology, 2010, vol. 156, no. 8, pp. 2566–2574.

    Article  CAS  PubMed  Google Scholar 

  31. De Philippi., R., Sili, C., Paperi, R., and Vincenzini, M., J. Appl. Phycol., 2001, vol. 13, no. 4, pp. 293–299.

    Article  Google Scholar 

  32. Karseno, Harada, K., Bamba, T., Dwi, S., Mahakhant, A., Yoshikawa, T., and Hirata, K., Biotechnol. Lett., 2009, vol. 31, no. 7, pp. 999–1003.

    Article  CAS  PubMed  Google Scholar 

  33. Susilaningsih, D., HAYATI J. Biosci., 2007, vol. 14, no. 1, pp. 18–22.

    Article  Google Scholar 

  34. Shalaby, E.A. and Shanab, S.M.M., Indian J. Geomarine Sci., 2013, vol. 42, no. 5, pp. 556–564.

    Google Scholar 

  35. Babić, O., Simeunović, J., and Kovač, D., Contemp. Agr., 2014, vol. 63, no. 3, pp. 291–300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kovač.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovač, D., Babić, O., Milovanović, I. et al. The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources. Appl Biochem Microbiol 53, 539–545 (2017). https://doi.org/10.1134/S000368381705009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381705009X

Keywords

Navigation