Skip to main content

Advertisement

Log in

Identification of epiphytic bacterial communities associated with the brown alga Splachnidium rugosum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Marine macroalgae host diverse bacterial communities with which they share a complex array of chemical interactions based on the exchange of nutrients, minerals and secondary metabolites. The brown alga Splachnidium rugosum is a rich source of a valuable fucose-containing sulphated polysaccharide (fucoidan). It grows exclusively in the Southern Hemisphere along temperate shores. While growth and development are dependent on specific microbial interactions, the microbiome of S. rugosum has not been characterized. This study reports on the composition and uniqueness of epiphytic bacterial communities associated with S. rugosum. Sporophytes were collected during winter (July 2012) from the Western Cape (−34° 18′ 5.0004″, +18° 48′ 59.0004″), South Africa. Culture-based methods relied on a range of selective marine media including marine agar, nutrient sea water agar, nutrient agar and thiosulfate-citrate-bile-salts-sucrose agar. Epiphytic isolates were identified to species level by 16S rRNA gene sequence analysis and encompassed 39 Gram-negative and 2 Gram-positive bacteria. Isolates were classified as Gamma-Proteobacteria, Alpha-Proteobacteria, Firmicutes or Bacteriodetes. Gamma-Proteobacteria were the most abundant, dominated by Vibrio and Pseudoalteromonas species. Three isolates displayed low sequence identity (˂97 %) with their closest relatives and were grouped into the genera Shewanella, Sphingomonas and Sulfitobacter. All bacterial isolates (41) were screened for anti-microbial activity against indicator strains of Bacillus cereus, Staphylococcus epidermidis, Mycobacterium smegmatis, Micrococcus luteus and Pseudomonas putida. Fifteen isolates (36 %) displayed antimicrobial activity against one or more of the indicator strains. One isolate (Pseudomonas sp.) was active against all strains tested. Splachnidium rugosum is a valuable source for the discovery of bioactive compounds of bacterial origin active against human pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari U, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2006) Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry 67:2474–82

    Article  CAS  PubMed  Google Scholar 

  • Akagawa-Matsushita M, Matsuo M, Koga Y, Yamasato K (1992) Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int J Syst Bacteriol 42:621–7

    Article  CAS  Google Scholar 

  • Apt K (1984) Effect of the symbiotic red alga Hypneocolax stellaris on its host Hypnea musciformis (Hypneaceae, Gigartinales). J Phycol 20:148–50

    Article  Google Scholar 

  • Armstrong E, Yan LM, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40

    Article  Google Scholar 

  • Bauer R, Chikindas ML, Dicks LMT (2005) Purification, partial amino acid sequence and mode of action of pediocin PD-1, a bacteriocin produced by Pediococcus damnosus NCFB 1832. Int J Food Microbiol 101:17–27

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Bekker JP, van Wyk N, du Toit C, Dicks LMT, Kossmann J (2009) Exopolysaccharide production by lactose-hydrolyzing bacteria isolated from traditionally fermented milk. Int J Food Microbiol 131:260–4

    Article  CAS  PubMed  Google Scholar 

  • Beaz-Hidalgoa R, Diégueza AL, Cleenwerck I, Balboa S, Doce A, de Vos P, Romalde JL (2010) Vibrio celticus sp. nov., a new Vibrio species belonging to the Splendidus clade with pathogenic potential for clams. Syst Appl Microbiol 33:311–5

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  CAS  Google Scholar 

  • Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar Drugs 5:220–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton MN (1992) Propagules of marine macroalgae: structure and development. Br Phycol J 27(3):219–32

    Article  Google Scholar 

  • Corre S, Prieur D (1990) Density and morphology of epiphytic bacteria on the kelp Laminaria digitata. Bot Mar 33:515–23

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–3

    Article  CAS  PubMed  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cumashi A, Ushakova NA, Preobrazhenskaya ME, D’Incecco A, Piccoli A, Totani L, Tinari N, Morozevich GE, Berman AE, Bilan MI et al (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17:541–52

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn I, de Kock MJD, de Waard P, van Beek TA, Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190:2777–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Descamps V, Colin S, Lahaye M, Jam M, Richard C, Potin P, Barbeyron T, Yvin J, Kloareg B (2006) Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol 8:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitrieva GY, Crawford RL, Yüksel GÜ (2006) The nature of plant growth-promoting effects of a pseudoalteromonad associated with the marine algae Laminaria japonica and linked to catalase excretion. J Appl Microbiol 100:1159–69

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Thomas T, Holmstrom C, Kjelleberg S (2000) Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ Microbiol 2:343–7

    Article  CAS  PubMed  Google Scholar 

  • Ermakova S, Sokolova R, Kim SM, Um BH, Isakov V, Zvyagintseva T (2011) Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and anticancer activity. Appl Biochem Biotechnol 164:841–50

    Article  CAS  PubMed  Google Scholar 

  • Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans ADL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiol 143:2983–9

    Article  CAS  Google Scholar 

  • Felstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–91

    Article  Google Scholar 

  • Fries L (1975) Some observations on the morphology of Enteromorpha linza (L.) J. Ag. and Enteromorpha compressa (L.) Grev. in axenic culture. Bot Mar 18:251–3

    Article  Google Scholar 

  • Fyfe JAM, Harris G, Govan JRW (1984) Revised pyocin typing method for Pseudomonas aeruginosa. J Clin Microbiol 20:47–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ (1997) Massetolides A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60:223–9

    Article  CAS  PubMed  Google Scholar 

  • Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–99

    Article  CAS  Google Scholar 

  • Gontang EA, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediments. Appl Environ Microbiol 73:3272–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guibet M, Colin S, Barbeyron T, Genicot S, Klareg B, Michel G, Helbert W (2007) Degradation of λ-carrageenan by Pseudoalteromonas carrageenovora λ-carrageenase: a new family of glycoside hydrolases unrelated to κ- and ι-carrageenases. Biochem J 404:105–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmström C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–93

    Article  PubMed  Google Scholar 

  • Holmström C, Egan S, Franks A, McCloy S, Kjelleberg S (2002) Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol Ecol 41:47–58

    Article  PubMed  Google Scholar 

  • Hugh R (1964) The proposed conservation of the generic name Vibrio pacini 1854 and designation of the neotype strain of Vibrio cholerae Pacini 1854. Int Syst Evol Microbiol 14:87–101

    Google Scholar 

  • Jensen S, Samuelsen OB, Andersen K, Torkildsen L, Lambert C, Choquet G, Paillard C, Berg O (2003) Characterization of strains of Vibrio splendidus and V. tapetis isolated from corwing wrasse Symphodus melops suffering vibriosis. Dis Aquat Org 53:25–31

    Article  PubMed  Google Scholar 

  • Kanagasabhapathy M, Sasaki H, Soumya H, Yamasaki S, Nagata S (2006) Antibacterial activities of marine epibiotic bacteria isolated from brown algae of Japan. Ann Microbiol 56:167–73

    Article  CAS  Google Scholar 

  • Kong MK, Chan KY (1979) A study on the bacterial flora isolated from marine algae. Bot Mar 22:83–97

    Article  Google Scholar 

  • Lambert C, Nicolas JL, Cilia V, Corre S (1998) Vibrio pectenicida sp. nov., a pathogen of scallop (Pecten maximus) larvae. Int J Syst Bacteriol 48:481–7

    Article  PubMed  Google Scholar 

  • Lee YK, Jung HJ, Lee HK (2006) Marine bacteria associated with the Korean brown alga, Undaria pinnatifida. J Microbiol 44:694–8

    CAS  PubMed  Google Scholar 

  • Lee BK, Katano T, Kitamura SI, Oh MJ, Han MS (2008) Monitoring of algicidal bacterium, Alteromonas sp strain A14 in its application to natural Cochlodinium polykrikoides blooming seawater using fluorescence in situ hybridization. J Microbiol 46:274–82

    Article  CAS  PubMed  Google Scholar 

  • Lemos ML, Toranzo AE, Barja JL (1985) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb Ecol 11:149–63

    Article  CAS  PubMed  Google Scholar 

  • Lucena T, Ruvira MA, Arahal DR, Macián MC, Pujalte MJ (2012) Vibrio aestivus sp. nov. and Vibrio quintilis sp. nov., related to Marisflavi and Gazogenes clades, respectively. Syst Appl Microbiol 35:427–31

    Article  CAS  PubMed  Google Scholar 

  • Marshall K, Joint I, Callow ME, Callow JA (2006) Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microb Ecol 52:302–10

    Article  PubMed  Google Scholar 

  • Mazure HGF, Field JG (1980) Density and ecological importance of bacteria on kelp fronds in an upwelling region. J Exp Mar Biol Ecol 43:173–82

    Article  Google Scholar 

  • Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W (2006) Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 71:23–33

    Article  CAS  PubMed  Google Scholar 

  • Miller IJ (1996) Alginate composition of some New Zealand brown seaweeds. Phytochemistry 41:1315–7

    Article  CAS  Google Scholar 

  • Mourao PA (2004) Use of sulfated fucans as anticoagulant and antithrombotic agents: Future perspectives. Curr Pharm Des 10:967–81

    Article  CAS  PubMed  Google Scholar 

  • Nam Y, Chang H, Park JR, Kwon H, Quan Z, Park Y, Kim B (2007) Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea. Int J Syst Evol Microbiol 57:562–5

    Article  CAS  PubMed  Google Scholar 

  • Nold SC, Zwart G (1998) Patterns and governing forces in aquatic microbial communities. Aquat Ecol 32:17–35

    Article  CAS  Google Scholar 

  • Park CS, Kakinuma M, Amano H (2006) Forecasting infections of the red rot disease on Porphyra yezoensis Ueda (Rhodophyta) cultivation farms. J Appl Phycol 18:295–9

    Article  Google Scholar 

  • Penesyan A, Marshall-Jones Z, Holmstrom C, Kjelleberg S, Egan S (2009) Antimicrobial activity observed among cultured epiphytic bacteria reflects their potential as source of new drugs. FEMS Microbiol Ecol 69:113–24

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer C, Oliver JD (2003) A comparison of thiosulphate-citric-bile salts-sucrose (TCBS) agar and thiosulphate-chloride-iodide (TCT) agar for the isolation of Vibrio species from estuarine environments. Lett Appl Microbiol 36:150–1

    Article  CAS  PubMed  Google Scholar 

  • Provasoli L, Pintner IJ (1980) Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). J Phycol 16:196–200

    Article  Google Scholar 

  • Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF (2006) The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 4:697–704

    Article  CAS  PubMed  Google Scholar 

  • Romanenko LA, Tanaka N, Svetashev VI, Falsen E (2013) Description of Cobetia amphilecti sp. nov., Cobetia litoralis sp. nov. and Cobetia pacifica sp. nov., classification of Halomonas halodurans as a later heterotypic synonym of Cobetia marina and emended descriptions of the genus Cobetia and Cobetia marina. Int J Syst Evol Microbiol 63:288–97

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–25

    CAS  PubMed  Google Scholar 

  • Salaün S, Kervarec N, Potin P, Haras D, Piotto M, La Barre S (2010) Whole-cell spectroscopy is a convenient tool to assist molecular identification of cultivatable marine bacteria and to investigate their adaptive metabolism. Talanta 80:1758–70

    Article  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sawabe T, Hayashi K, Moriwaki J, Thompson FL, Swings J, Potin P, Christen R, Ezura Y (2004) Vibrio gallicus sp. nov., isolated from the gut of the French abalone Haliotis tuberculata. Int J Syst Evol Microbiol 54:843–6

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Kimura Takagi I, Nagaoka M, Hashimoto S, Sawada H, Ueyama S, Yokokura T (1999) Inhibitory effect of Cladosiphon fucoidan on the adhesion of Helicobacter pylori to human gastric cells. J Nutr Sci Vitaminol 45:325–36

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Bijo AJ, Baghel RS, Reddy CRK, Jha B (2011) Role of bacterial isolates in enhancing the bud induction in the industrially important red alga Gracilaria dura. FEMS Microbiol Ecol 76:381–92

    Article  CAS  PubMed  Google Scholar 

  • Skerratt JH, Bowman JP, Hallegraeff G, James S, Nichols PD (2002) Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar Ecol Prog Ser 244:1–15

    Article  Google Scholar 

  • Skottsberg C (1920) Remarks on Splachnidium rugosum (Linnaeus). Greville. Svensk Bot Tidskr 14:277–87

    Google Scholar 

  • Smit AJ (2004) Medicinal and pharmaceutical uses of seaweed natural products: a review. J Appl Phycol 16:245–62

    Article  CAS  Google Scholar 

  • Sobecky PA, Mincer TJ, Chang MC, Toukdarian A, Helinski DR (1998) Isolation of broad-host-range replicons from marine sediment bacteria. Appl Environ Microbiol 64:2822–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staufenberger T, Thiel V, Wiese J, Imhoff JF (2008) Phylogenetic analysis of bacteria associated with Laminaria saccharina. FEMS Microbiol Ecol 64:65–77

    Article  CAS  PubMed  Google Scholar 

  • Su J, Yang X, Zhou Y, Zheng T (2010) Marine bacteria antagonistic to the harmful algal bloom species Alexandrium tamarense (Dinophyceae). Biol Cont 56:132–8

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatewaki M, Provasoli L, Pintner J (1983) Morphogenesis of Monostroma oxyspermum (Kütz.) Doty (Chlorophyceae) in an axenic culture, especially in bialgal culture. J Phycol 19:409–16

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. Wiley, New York. doi:10.1002/0471250953.bi0203s00, Unit 2.3

    Google Scholar 

  • Tujula NA, Crocetti GR, Burke K, Thomas T, Holmström C, Kjelleberg S (2010) Variability and abundance of the epiphytic bacterial community associated with a green marine ulvacean alga. ISME J 4:301–11

    Article  PubMed  Google Scholar 

  • Uchida M, Nakata K, Maeda M (1997) Conversion of Ulva fronds to a hatchery diet for Artemia nauplii utilizing the degrading and attaching abilities of Pseudoalteromonas espejiana. J Appl Phycol 9:541–9

    Google Scholar 

  • Urvantseva A, Bakunina I, Nedashkovskaya O, Kim S, Zvyagintseva T (2006) Distribution of intracellular fucoidan hydrolases among marine bacteria of the family Flavobacteriaceae. Appl Biochem Microbiol 42:484–91

    Article  CAS  Google Scholar 

  • Vishchuk OS, Ermakova SP, Zvyagintseva TN (2011) Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: Isolation, structural characteristics, and antitumor activity. Carbohydr Res 346:2769–76

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Shuai L, Li Y, Lin W, Zhao X, Duan D (2008) Phylogenetic analysis of epiphytic marine bacteria on hole-rotten diseased sporophytes of Laminaria japonica. J Appl Phycol 20:403–9

    Article  Google Scholar 

  • Wayne LG, Brenne DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–4

    Article  Google Scholar 

  • Weinberger F (2007) Pathogen induced defense and innate immunity in macroalgae. Biol Bull 213:290–302

    Article  CAS  PubMed  Google Scholar 

  • Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff JF (2009) Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol 11:287–300

    Article  CAS  PubMed  Google Scholar 

  • Womersley HBS (1987) The marine Benthic flora of Southern Australia. Part two. In: Handbooks of the flora and fauna of South Australia. South Australian Government Printing Division, Adelaide

  • Zheng L, Xiaotian H, Haimin CHEN, Wei LIN, Xiaotian YAN (2005) Marine bacteria associated with marine macroorganisms: the potential antimicrobial resources. Ann Microbiol 55119–125

Download references

Acknowledgments

This study was funded by the Libyan Government (Ministry of Higher Education and Scientific Research) and the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolene Bauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albakosh, M.A., Naidoo, R.K., Kirby, B. et al. Identification of epiphytic bacterial communities associated with the brown alga Splachnidium rugosum . J Appl Phycol 28, 1891–1901 (2016). https://doi.org/10.1007/s10811-015-0725-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0725-z

Keywords

Navigation