In this section, based on what has been proposed in the GMO regulation literature to date, we identify a non-exhaustive set of legal principles and criteria of relevance that we believe any reformed EU GM regulatory system would have to meet. By “legal principles” we mean rules or standards of a general kind that, whether codified or not, have to be followed by legislators and decision-makers in one way or another. They are of various kinds; some principles have substantive effects, others guide procedures; some aim at protecting individual rights, others at protecting common values. However, what unites them is that they are usually of great importance as legal sources and that it is common to use them as a point of departure when analyzing law interpretations and applications in practice (Marcusson 2012). In this paper, they will primarily be used to analyze the design of the present EU GM legislation (i.e., the legal acts themselves), rather than interpretations and applications of the legislation, for example in the form of legal rulings.
Legal Certainty, Non-discrimination, Proportionality and Scientific Adaptability
Drawing on literature in the field, it could be argued that regulations in the food and feed areas should minimally satisfy four legal principles and criteria: legal certainty, non-discrimination, proportionality, and scientific adaptability.
The principle of legal certainty is a well-established principle in EU law as well as international and public law. It requires that the law is precise and understandable and that its implications are foreseeable by those to whom it applies. A major criticism against the EU GM legislation is that it fails to meet the principle of legal certainty, since it is at present (autumn 2016) unclear whether plants developed through new breeding techniques (NBTs) should count as genetically modified organisms in accordance with the definition provided in the Release Directive. We will return to this argument in “Legal Certainty” section.
The principle of non-discrimination essentially requires that “comparable situations should not be treated differently” (Morris 2007, p. 5); specifically in a GM context, like risks should be treated alike. One of the most persistent arguments against the present European GM legislation is that it violates the requirement of non-discrimination, since although GM varieties could be phenotypically identical to conventionally bred varieties they are subject to much more stringent regulation. Thus, the precautionary principle upon which EU environmental law (including the Release Directive) is based is not consistently applied in the case of new crop introductions. We will return to this argument in “Non-discrimination and coherence with non-GM breeding techniques” section.
The proportionality principle gives the government the right to exercise its power against the citizens in pursuit of a public interest (e.g., protection of human health or the environment) if the measures taken are effective, necessary, and balanced (Winter 2013; see also Jans and Vedder 2012). The principle thus requires that the rights of citizens must never be violated by the government unless the objectives pursued are justifiable and the legislative measures (means) taken to achieve those objectives satisfy certain criteria (the means must be capable of serving the public interest, must not be replaceable by measures that are equally effective but less intrusive, and not excessively intrusive in the light of the pursued objectives) (Winter 2013).
The proportionality principle is enshrined in Article 5(4) of the Treaty on the European Union, which states that “the content and form of Union action shall not exceed what is necessary to achieve the objectives of the Treaties”. The primary objectives of the EU GM legislation are to protect human health and the environment (including animal health and welfare), and the legislator has chosen to pursue these objectives by restricting a private interest, namely the freedom of cultivation/trade.Footnote 4 The proportionality-related criticism mounted against the legislation amounts to questioning whether the Release Directive and the other legal acts are indeed appropriate (effective, necessary and balanced) in order to reach the adopted objectives. We will return to this argument in “Proportionality” section.
Scientific adaptability means that the regulatory system allows for the latest scientific findings on emergence of new hazards, changes in technology, new evidence on risk, et cetera, to be taken into account (Jaffe 2004; Riviere and Buckley 2012). The criterion of scientific adaptability can be seen as a refinement of the principles of non-discrimination and proportionality in that a regulatory system that is not flexible enough to take the latest scientific findings into account seldom has the capacity to regulate risk in a non-discriminatory and proportionate way. A common argument against the EU GM legislation is that it is outdated from a scientific point of view since it uses certain production techniques rather than the individual traits and the risk they give rise to as a trigger for regulatory oversight. By tying the risk assessment process to specific production techniques it becomes difficult to adjust to new scientific evidence concerning the actual risks of GM introductions. We will return to this argument in “Scientific Adaptability” section.
As with legal principles and criteria in general one should keep in mind that the four principles and criteria used as analytic framework in this paper cannot really be discussed in isolation. To some extent the principles and criteria overlap (as indicated above) and in many cases they need to be balanced against one another or against other principles. For example, the principle of proportionality sometimes has to be balanced against the precautionary principle, and the criterion of scientific adaptability against legal certainty and predictability (Ebbesson 2009). However, for systematic reasons we discuss the principles and criteria under separate headings below.
Inclusion of Non-safety Considerations
In addition to providing protection against environmental and human health hazards, it could be argued that regulations in the food and feed areas should be normative legitimate. That is, they should be responsive to people’s political, ethical, and religious beliefs and preferences concerning food production, retailing and marketing (Kysar 2004; McHughen 2007). One way of achieving normative legitimacy is to allow for non-risk related aspects to be part of the GM approval procedure (Du 2012; see also Marchant, Meyer and Scanlon 2010), for example by supplementing the environmental and health risk assessment with an ethical assessment or a broader socioeconomic impact assessment. In this paper, the term “non-safety considerations” will be used to denote such non-risk related aspects.Footnote 5 A number of legislations presently in force allow for non-safety considerations to play a role in the GM approval process, including Norway, Sweden, and Argentina (Falck-Zepeda 2009; Marcoux, Cardenas Gomez and Létourneau 2013).
Whether or not non-safety considerations should be part of the approval process for GM varieties is a controversial issue. A common argument against the inclusion of non-safety considerations is that they may render the GM approval process more indiscriminate and less scientifically grounded. On this view, non-safety effects are much harder to define and quantify than health and environmental impacts; they are seldom fixed in time but tend to shift depending on how societies evolve; and are ultimately something that people will have very different views on (see discussion in Marchant, Meyer and Scanlon 2010).
However, inclusion of non-safety considerations could be argued for on both normative and instrumental grounds. Perhaps the most obvious normative argument in support of inclusion of such aspects, as indicated above, relates to the purported rights of members of a liberal society to raise social, ethical, religious, et cetera, concerns about decisions made by the government, and to have those concerns addressed by governmental decision makers (Marchant, Meyer and Scanlon 2010). It is an empirical fact that people have preferences over manufacturing processes; they care about how food and feed are produced, as evidenced by, for example, the Fairtrade and other social movements. Arguably, if there is reason to believe that those preferences are well-informed in the sense that they are not based on misunderstandings of the science underpinning genetic modification or what is presently known about the potential social, environmental and health consequences of GM introductions, they should not be dismissed categorically by the legislator (Kysar 2004).
To further strengthen this line of argumentation, one could point to the effects that an inclusion of non-safety considerations could have in terms of people’s trust in the GM regulatory system. If recognition of people’s preferences over food and feed manufacturing processes and the broader socioeconomic impacts of GM introductions can help to further trust in the regulators and the decisions taken by them, then this would serve as an additional reason for including such considerations in the GM approval process. Empirical evidence from the psychological and economic sciences suggests that giving the public a voice in the GM approval process might indeed have such an effect (see Kysar 2004, p. 604ff. and references therein).
There is in addition a more principled objection to the argument that exclusion of non-safety considerations will make the GM approval process more objective from a scientific point of view. As indicated above, environmental and health risk assessment is often perceived to be a strictly scientific and value-neutral exercise. However, it is vital to remember that values are an inherent part of the scientific enterprise, as well as the risk assessment process itself. Values can, for example, influence both the risk selection process (what risks to look at) and how evidence concerning risk is assessed. To take one example, Douglas (2009) mentions the case of chemical risk assessment, in which one often has to extrapolate from high experimental doses given to lab animals to low environmental doses to which humans are exposed. There are many different extrapolation methods available, and the choice of method often involves a value judgement concerning what should count as sufficient evidence. Du (2012) follows a similar line of argumentation when she contends that even if value judgments are not explicitly included in the GM approval process they very often sneak in through the backdoor:
Non-scientific value judgments are embedded within science and technology regulation to a greater extent than we frequently realize. For example, “safety” concerns require regulators to look outside of the realm of scientific facts for indicators of acceptability and adequate protection because the degree of acceptable risk is ultimately a non-scientific question of culture, values, and priorities. (Du 2012, p. 391).
Therefore, instead of creating the impression of an entirely value-neutral and scientifically objective GM risk assessment process by rejecting non-safety considerations altogether, it appears to be much more intellectually honest to explicitly recognize that such considerations are, at least to some extent, already part of the GM approval process. This could lead to increased transparency, greater accountability on behalf of the political decision makers, and again, increased levels of public trust in the regulatory system.
However, exactly how non-safety considerations should best be incorporated into the GM approval procedure remains to be investigated. There is a risk that by allowing for non-safety considerations the government could “end up sacrificing truth for legitimacy in an attempt to win public trust” (Du 2012, p. 398). If people’s preferences are ill-informed in the sense that they are based on false and misleading beliefs about the scientific underpinnings of genetic engineering, they could easily be exploited by interest groups who wish to further their own interests in certain forms of production or life styles (Kysar 2004). This could lead to perfectly safe and beneficial GM varieties not being commercialized, and for no good reasons. Therefore, the ways in which non-safety considerations are incorporated into the approval procedure will have to be scrutinized carefully. That, however, is a question that lies beyond the scope of this paper.
Admittedly, by postulating that non-safety should be part of the approval process we take a stance on this controversial issue. The reason why non-safety considerations are still included in our analysis is not only that they enjoy some normative support and, therefore, enriches our legal analysis. It is also plausible to assume that a reformed EU regulatory framework for GMOs would have to make room for non-safety considerations in order to constitute a feasible policy alternative. The recent addition of Article 26b to the Release Directive, decided by the European Parliament indeed suggests that non-safety considerations will play an even greater role in decision making by the EU Member States in the future.Footnote 6