Skip to main content
Log in

Logarithmic girth expander graphs of \(SL_n({\mathbb {F}}_p)\)

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We provide an explicit construction of finite 4-regular graphs \((\Gamma _k)_{k\in {\mathbb {N}}}\) with \(\text {girth}\, \Gamma _k\rightarrow \infty \) as \(k\rightarrow \infty \) and \(\frac{\text {diam}\,\Gamma _k}{\text {girth}\,\Gamma _k}\leqslant D\) for some \(D>0\) and all \(k\in {\mathbb {N}}\). For each fixed dimension \(n\geqslant 2,\) we find a pair of matrices in \(SL_{n}({\mathbb {Z}})\) such that (i) they generate a free subgroup, (ii) their reductions \(\bmod \, p\) generate \(SL_{n}({\mathbb {F}}_{p})\) for all sufficiently large primes p, (iii) the corresponding Cayley graphs of \(SL_{n}({\mathbb {F}}_{p})\) have girth at least \(c_n\log p\) for some \(c_n>0\). Relying on growth results (with no use of expansion properties of the involved graphs), we observe that the diameter of those Cayley graphs is at most \(O(\log p)\). This gives infinite sequences of finite 4-regular Cayley graphs of \(SL_n({\mathbb {F}}_p)\) as \(p\rightarrow \infty \) with large girth and bounded diameter-by-girth ratio. These are the first explicit examples in all dimensions \(n\geqslant 2\) (all prior examples were in \(n=2\)). Moreover, they happen to be expanders. Together with Margulis’ and Lubotzky–Phillips–Sarnak’s classical constructions, these new graphs are the only known explicit logarithmic girth Cayley graph expanders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Not applicable as the results presented in this manuscript rely on no external sources of data or code.

Notes

  1. For \(n\geqslant 3\), \(G=SL_n({\mathbb {Z}})\) has Kazhdan’s property (T), hence any generating set S and a nested family of finite index normal subgroups with \(\bigcap _{n=0}^{\infty }G_n=\{1\}\) naturally provide an infinite expander \(\bigsqcup _{n=0}^{\infty } Cay(G/G_n, S_n),\) where \(S_n\) is the canonical image of S. Such expanders are neither of large girth, nor dg-bounded.

  2. For elements gh in a group G, the commutator [gh] is equal to \(g^{-1}h^{-1}gh\).

  3. A map between graphs is regular if it is Lipschitz and pre-images of vertices have uniformly bounded cardinality. Two graphs are regularily equivalent if there exist two regular maps: from one graph to the other, and back.

References

  1. Arzhantseva, G., Delzant, T.: Examples of random groups, available on the authors’ websites (2008)

  2. Arzhantseva, G., Guentner, E., Špakula, J.: Coarse non-amenability and coarse embeddings. Geom. Funct. Anal. 22(1), 22–36 (2012)

    Article  MathSciNet  Google Scholar 

  3. Arzhantseva, G., Tessera, R.: Admitting a coarse embedding is not preserved under group extensions. Int. Math. Res. Not. IMRN 20, 6480–6498 (2019)

    Article  MathSciNet  Google Scholar 

  4. Biggs, N.: Constructions for cubic graphs with large girth. Electron. J. Combin. 5, Article 1 (1998)

  5. Bourgain, J., Gamburd, A.: Uniform expansion bounds for Cayley graphs of \({\rm SL}_2({\mathbb{F}}_p)\). Ann. Math. (2) 167(2), 625–642 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J., Varjú, P.P.: Expansion in \(SL_d({\bf Z}/q{\bf Z}),\, q\) arbitrary. Invent. Math. 188(1), 151–173 (2012)

    Article  MathSciNet  Google Scholar 

  7. Breuillard, E.: Approximate subgroups and super-strong approximation. In: Groups St Andrews 2013: London Mathematical Society Lecture Note Series, vol. 422, pp. 1–50. Cambridge University Press, Cambridge (2015)

  8. Breuillard, E., Green, B., Tao, T.: Approximate subgroups of linear groups. Geom. Funct. Anal. 21(4), 774–819 (2011)

    Article  MathSciNet  Google Scholar 

  9. Brooks, R.: The spectral geometry of a tower of coverings. J. Differ. Geom. 23, 97–107 (1986)

    Article  MathSciNet  Google Scholar 

  10. Burger, M.: Petites valeurs propres du Laplacien et topologie de Fell, doctoral thesis, Econom Druck AG (Basel) (1986)

  11. Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs, London Mathematical Society Student Texts, vol. 55. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  12. Erdős, P., Sachs, H.: Reguläre Graphen gegebener Taillenweite mit minimaler Knotenzahlare Graphen gegebener Taillenweite mit minimaler Knotenzahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 12, 251–257 (1963)

  13. Golsefidy, A.S., Varjú, P.P.: Expansion in perfect groups. Geom. Funct. Anal. 22(6), 1832–1891 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gow, R., Tamburini, M.C.: Generation of \({\rm SL}(n, {\bf Z})\) by a Jordan unipotent matrix and its transpose. Linear Algebra Appl. 181, 63–71 (1993)

    Article  MathSciNet  Google Scholar 

  15. Gowers, W.T.: Quasirandom groups. Combin. Probab. Comput. 17(3), 363–387 (2008)

    Article  MathSciNet  Google Scholar 

  16. Gromov, M.: Random walk in random groups. Geom. Funct. Anal. 13(1), 73–146 (2003)

    Article  MathSciNet  Google Scholar 

  17. Helfgott, H.A.: Growth and generation in \({\rm SL}_2({\mathbb{Z}}/p{\mathbb{Z}})\). Ann. Math. (2) 167(2), 601–623 (2008)

    Article  MathSciNet  Google Scholar 

  18. Higson, N., Lafforgue, V., Skandalis, G.: Counterexamples to the Baum–Connes conjecture. Geom. Funct. Anal. 12(2), 330–354 (2002)

    Article  MathSciNet  Google Scholar 

  19. Hume, D.: A continuum of expanders. Fund. Math. 238(2), 143–152 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kasparov, G., Yu, G.: The coarse geometric Novikov conjecture and uniform convexity. Adv. Math. 206, 1–56 (2006)

    Article  MathSciNet  Google Scholar 

  21. Kontorovich, A., Long, D.D., Lubotzky, A., Reid, A.W.: What is \(\dots \) a thin group? Notices Amer. Math. Soc. 66(6), 905–910 (2019)

    Article  MathSciNet  Google Scholar 

  22. Kun, G.: On sofic approximations of property (T) groups (2016), arxiv:1606.04471

  23. Lafforgue, V.: Un renforcement de la propriété (T). Duke Math. J. 143(3), 559–602 (2008)

    Article  MathSciNet  Google Scholar 

  24. Lafforgue, V.: Propriété (T) renforcée Banachique et transformation de Fourier rapide. J. Topol. Anal. 1(3), 191–206 (2009)

    Article  MathSciNet  Google Scholar 

  25. Landesman, A., Swaminathan, A., Tao, J., Xu, Y.: Lifting subgroups of symplectic groups over \({\mathbb{Z}}/\ell {\mathbb{Z}}\). Res. Number Theory 3, Art. 14 (2017)

  26. Larsen, M.: Navigating the Cayley graph of \(SL_2({\mathbb{F}}_p)\). Int. Math. Res. Not. 27, 1465–1471 (2003)

    Article  Google Scholar 

  27. Lubotzky, A.: One for almost all: generation of \({\rm SL}(n, p)\) by subsets of \({\rm SL}(n, {\bf Z})\), Algebra, \(K\)-theory, groups, and education (New York, 1997), Contemporary Mathematics, vol. 243. American Mathematical Society, Providence, RI 1999, 125–128 (1999)

  28. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MathSciNet  Google Scholar 

  29. Lubotzky, A., Venkataramana, T.N.: The congruence topology, Grothendieck duality and thin groups. Algebra Number Theory 13(6), 1281–1298 (2019)

    Article  MathSciNet  Google Scholar 

  30. Lucas, E.: Theorie des Fonctions Numeriques Simplement Periodiques. Amer. J. Math. 1(2), 184–196 (1878)

    Article  MathSciNet  Google Scholar 

  31. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory, Classics in Mathematics. Springer, Berlin. Reprint of the 1977 edition (2001)

  32. Margulis, G.A.: Explicit constructions of graphs without short cycles and low density codes. Combinatorica 2(1), 71–78 (1982)

    Article  MathSciNet  Google Scholar 

  33. Matthews, C.R., Vaserstein, L.N., Weisfeiler, B.: Congruence properties of Zariski-dense subgroups. I. Proc. London Math. Soc. (3) 48(3), 514–532 (1984)

    Article  MathSciNet  Google Scholar 

  34. Mendel, M., Naor, A.: Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Études Sci. 119, 1–95 (2014)

    Article  MathSciNet  Google Scholar 

  35. Mendel, M., Naor, A.: Expanders with respect to Hadamard spaces and random graphs. Duke Math. J. 164(8), 1471–1548 (2015)

    Article  MathSciNet  Google Scholar 

  36. Naor, A., Silberman, L.: Poincaré inequalities, embeddings, and wild groups. Compos. Math. 147(5), 1546–1572 (2011)

    Article  MathSciNet  Google Scholar 

  37. Nikolov, N., Pyber, L.: Product decompositions of Quasirandom groups and a Jordan type theorem. J. Eur. Math. Soc. (JEMS) 13(4), 1063–1077 (2011)

    Article  MathSciNet  Google Scholar 

  38. Nori, M.V.: On subgroups of \(GL_n ({\mathbb{F}}_p)\). Invent. Math. 88, 257–275 (1987)

    Article  MathSciNet  Google Scholar 

  39. Nowak, P., Sawicki, D.: Warped cones and spectral gaps. Proc. Amer. Math. Soc. 145(2), 817–823 (2017)

    Article  MathSciNet  Google Scholar 

  40. Ostrovskii, M.I.: Low-distortion embeddings of graphs with large girth. J. Funct. Anal. 262(8), 3548–3555 (2012)

    Article  MathSciNet  Google Scholar 

  41. Pyber, L., Szabó, E.: Growth in finite simple groups of Lie type. J. Amer. Math. Soc. 29(1), 95–146 (2016)

    Article  MathSciNet  Google Scholar 

  42. Sachs, H.: Regular graphs with given girth and restricted circuits. J. London Math. Soc. 38, 423–429 (1963)

    Article  MathSciNet  Google Scholar 

  43. Sarnak, P.: Notes on thin matrix groups, Thin groups and superstrong approximation, 343–362, Math. Sci. Res. Inst. Publ., 61. Cambridge University Press, Cambridge (2014)

  44. Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Proceedings of Symposia in Pure Mathematics, Vol. 8, pp. 1–15. American Mathematical Society, Providence (1965)

  45. Weigel, T.: On the profinite completion of arithmetic groups of split type, Lois d’algèbres et variétés algébriques (Colmar, 1991), pp. 79–101. Travaux en Cours, 50, Hermann, Paris (1996)

Download references

Acknowledgements

We thank Peter Sarnak for indicating that free subgroups from our Main Theorem are thin matrix groups, see Sect. 6, Alex Lubotzky for pointing out that our result also yields r-regular logarithmic girth Cayley expander graphs, for all even integer \(r\geqslant 4\), see Corollaries 6.1 and 6.2 and Nikolay Nikolov for attracting our attention to Nori’s result [38]. We are grateful to the anonymous referees for detailed comments and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by the European Research Council (ERC) Grant of Goulnara Arzhantseva, “ANALYTIC” Grant Agreement No. 259527.

Appendix

Appendix

For an interested reader, we give a detailed proof of Theorem 5.3.

Proof of Theorem 5.3

Fix \((n-1) = k\in {\mathbb {N}}\) and consider the matrix \(A^{lr_{i}}B^{ls_{i}}\) with \(l \geqslant 3k\) and \(r_{i},s_{i}\in {\mathbb {Z}}\backslash \lbrace 0\rbrace \). Let \(a,b\in {\mathbb {N}}\) with \(a,b\geqslant 2\). Suppose

$$\begin{aligned} {\mathcal {P}}_{i} = A^{lr_{i}}B^{ls_{i}} = \begin{pmatrix} P_{11}(a,b) &{}\quad P_{12}(a,b) &{}\quad \ldots &{}\quad P_{1n}(a,b)\\ P_{21}(a,b) &{}\quad P_{22}(a,b) &{}\quad \ldots &{}\quad P_{2n}(a,b)\\ P_{31}(a,b) &{}\quad P_{32}(a,b) &{}\quad \ldots &{}\quad P_{3n}(a,b)\\ \vdots &{}\quad &{}\quad &{}\quad \vdots \\ &{}\quad &{}\quad \ldots &{}\quad P_{(n-1)n}(a,b)\\ P_{n1}(a,b) &{}\quad P_{n2}(a,b) &{}\quad \ldots &{}\quad P_{nn}(a,b)\\ \end{pmatrix} \in SL_{n}({\mathbb {Z}}), \end{aligned}$$

where the polynomials \(P_{uv}(a,b), 1\leqslant u,v\leqslant n\) satisfy

  • \(P_{11}(a,b) = {lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k} + {lr_{i} \atopwithdelims ()k-1}{ls_{i} \atopwithdelims ()k-1}a^{k-1}b^{k-1}+ \cdots + {lr_{i} \atopwithdelims ()3}{ls_{i} \atopwithdelims ()3}a^{3}b^{3} + {lr_{i} \atopwithdelims ()2}{ls_{i} \atopwithdelims ()2}a^{2}b^{2} + {lr_{i} \atopwithdelims ()1}{ls_{i} \atopwithdelims ()1}ab~+~1\)

  • \(P_{12}(a,b) = {lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k-1}a^{k}b^{k-1} + {lr_{i} \atopwithdelims ()k-1}{ls_{i} \atopwithdelims ()k-2}a^{k-1}b^{k-2}+ \cdots + {lr_{i} \atopwithdelims ()3}{ls_{i} \atopwithdelims ()2}a^{3}b^{2} + {lr_{i} \atopwithdelims ()2}{ls_{i} \atopwithdelims ()1}a^{2}b^{1} + {lr_{i} \atopwithdelims ()1}a \)

    ...

    and in general

  • \(P_{uv}(a,b) = \Sigma _{u'=u,v'=v}^{u'=k+2-v,v'=k+1}{lr_{i} \atopwithdelims ()k-u'+1}{ls_{i} \atopwithdelims ()k-v'+1}a^{k-u'+1}b^{k-v'+1} \) with \(u\leqslant v\)

  • \(P_{uv}(a,b) = \Sigma _{u'=u,v'=v}^{u'=k+1, v' = k+2-u}{lr_{i} \atopwithdelims ()k-u+1}{ls_{i} \atopwithdelims ()k-v+1}a^{k-u'+1}b^{k-v'+1}\) with \(u > v\)

    ...

  • \(P_{nn}(a,b) = 1\)

Then, we have the following inequalities for \(l\geqslant 3k\).

  1. (1)

    \(1 - \frac{1}{15}\leqslant \frac{P_{11}(a,b)}{{lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k}} \leqslant 1 + \frac{1}{15}\).

  2. (2)

    \( |\frac{P_{12}(a,b)}{{lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k}}| \leqslant \frac{1}{4}(1+\frac{1}{4^{2}}+ \frac{1}{4^{4}}+\cdots +\frac{1}{4^{2k-2}}) < \frac{1}{4}.\frac{16}{15} .\)

    ...

    and in general

  3. (3)

    \( |\frac{P_{uv}(a,b)}{{lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k}}| \leqslant \frac{1}{4^{u+v-2}} \cdot \frac{16}{15}\,\, \forall uv > 1.\)

We proceed as in the \(n=4\) case and consider

$$\begin{aligned} Z = \prod _{i=1}^{t}{\mathcal {P}}_{i} = \prod _{i=1}^{t} A^{lr_{i}}B^{ls_{i}}, \hbox { for some } t\in {\mathbb {N}}, r_{i},s_{i}\in {\mathbb {Z}}\backslash \lbrace 0 \rbrace . \end{aligned}$$

We shall show, by induction, that \(|z_{11}| > |z_{12}| + \cdots + |z_{1n}| + 1\), where the \(z_{ij}, 1\leqslant i,j\leqslant n\) denote the elements of the matrix Z.

From the above inequalities, it is clear that \(\Sigma _{v=2}^{n} |\frac{P_{1v}(a,b)}{{lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k}}|<\frac{1}{2}\) which gives

$$\begin{aligned} \frac{1}{{lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k}} + \Sigma _{v=2}^{n} \left| \frac{P_{1v}(a,b)}{{lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k}}\right| < \frac{P_{11}(a,b)}{{lr_{i} \atopwithdelims ()k}{ls_{i} \atopwithdelims ()k}a^{k}b^{k}} \end{aligned}$$

and in turn implies that the inductive assumption (basis of induction) holds.

For the main step of the induction, suppose we are already given

$$\begin{aligned} Z =\begin{pmatrix} z_{11} &{}\quad z_{12} &{}\quad \ldots &{}\quad z_{1n}\\ z_{21} &{}\quad z_{22} &{}\quad \ldots &{}\quad z_{2n}\\ \vdots &{}\quad \vdots &{}\quad &{}\quad \vdots \\ z_{n1} &{}\quad z_{n2} &{}\quad \ldots &{}\quad z_{nn}\\ \end{pmatrix} \end{aligned}$$

with \(|z_{11}| > |z_{12}| + \cdots + |z_{1n}| + 1 \).

Let

$$\begin{aligned} Z' = \begin{pmatrix} z'_{11} &{}\quad z'_{12} &{}\quad \ldots &{}\quad z'_{1n}\\ z'_{21} &{}\quad z'_{22} &{}\quad \ldots &{}\quad z'_{2n}\\ \vdots &{}\quad \vdots &{}\quad &{}\quad \vdots \\ z'_{n1} &{}\quad z'_{n2} &{}\quad \ldots &{}\quad z'_{nn}\\ \end{pmatrix} = Z\times A^{lr_{t+1}}B^{ls_{t+1}}. \end{aligned}$$

Expand the first row of \(Z'\), i.e., \(z'_{1j}, 1\leqslant j \leqslant n\) in terms of the first row of Z, \(z_{1j}, 1\leqslant j\leqslant n\) and the elements of the matrix \( A^{lr_{t+1}}B^{ls_{t+1}}\). Then, we can conclude by considering the inductive assumption \(|z_{11}| > |z_{12}| + \cdots + |z_{1n}| + 1 \) and the above inequalities for the matrix \(A^{lr_{t+1}}B^{ls_{t+1}}\) that

$$\begin{aligned} |z'_{11}| > |z'_{12}|+ \cdots +|z'_{1n}| + 1. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzhantseva, G., Biswas, A. Logarithmic girth expander graphs of \(SL_n({\mathbb {F}}_p)\). J Algebr Comb 56, 691–723 (2022). https://doi.org/10.1007/s10801-022-01128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01128-z

Keywords

Mathematics Subject Classification

Navigation