Skip to main content
Log in

Expansion in SL d (Z/q Z), q arbitrary

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let S be a fixed finite symmetric subset of SL d (Z), and assume that it generates a Zariski-dense subgroup G. We show that the Cayley graphs of π q (G) with respect to the generating set π q (S) form a family of expanders, where π q is the projection map ZZ/q Z.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, H., Margulis, G.A., Soifer, G.A.: Semigroups containing proximal linear maps. Isr. J. Math. 91, 1–30 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N.: Eigenvalues and expanders. Combinatorica 6(2), 83–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Milman, V.D.: λ 1, isoperimetric inequalities for graphs, and superconcentrators. J. Comb. Theory, Ser. B 38(1), 73–88 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Furman, A., Lindenstrauss, E., Mozes, S.: Stationary measures and equidistribution for orbits of non-abelian semigroups on the torus. J. Am. Math. Soc. 24(1), 231–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J., Gamburd, A.: Uniform expansion bounds for Cayley graphs of \(\mathit {SL}_{2}(\mathbb{F}_{p})\). Ann. Math. 167, 625–642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J., Gamburd, A.: Expansion and random walks in SL d (ℤ/p nℤ): I. J. Eur. Math. Soc. 10, 987–1011 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Gamburd, A.: Expansion and random walks in SL d (ℤ/p nℤ): II. With an appendix by J. Bourgain. J. Eur. Math. Soc. 11(5), 1057–1103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J., Gamburd, A., Sarnak, P.: Affine linear sieve, expanders, and sum-product. Invent. Math. 179(3), 559–644 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Breuillard, E., Gamburd, A.: Strong uniform expansion in SL(2,p). Geom. Funct. Anal. 20(5), 1201–1209 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Breuillard, E., Green, B.J., Tao, T.C.: Approximate subgroups of linear groups. arXiv:1005.1881

  11. Breuillard, E., Green, B.J., Tao, T.C.: Suzuki groups as expanders. arXiv:1005.0782

  12. Breuillard, E., Green, B.J., Guralnick, R., Tao, T.C.: Expansion in finite simple groups of Lie type. In preparation

  13. Dinai, O.: Poly-log diameter bounds for some families of finite groups. Proc. Am. Math. Soc. 134(11), 3137–3142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787–794 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gamburd, A., Shahshahani, M.: Uniform diameter bounds for some families of Cayley graphs. Int. Math. Res. Not. 71, 3813–3824 (2004)

    Article  MathSciNet  Google Scholar 

  16. Goldsheid, I.Ya., Margulis, G.A.: Lyapunov exponents of a product of random matrices. Usp. Mat. Nauk 44(5), 13–60 (1989) (in Russian). Translation in Russ. Math. Surv. 44(5), 11–71 (1989)

    MathSciNet  Google Scholar 

  17. Gowers, W.T.: Quasirandom groups. Comb. Probab. Comput. 17, 363–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Helfgott, H.A.: Growth and generation in SL 2(ℤ/pℤ). Ann. Math. 167, 601–623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helfgott, H.A.: Growth in SL 3(ℤ/pℤ). arXiv:0807.2027

  20. Harris, M.E., Hering, C.: On the smallest degrees of projective representations of the groups PSL(n,q). Can. J. Math. 23, 90–102 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hoory, S., Linial, N., Widgerson, A.: Expander graphs and their applications. Bull. Am. Math. Soc. 43(4), 439–561 (2006)

    Article  MATH  Google Scholar 

  22. Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lang, S.: Algebra. Graduate Texts in Mathematics, vol. 211. Springer, New York (2002)

    Book  MATH  Google Scholar 

  24. Long, D.D., Lubotzky, A., Reid, A.W.: Heegaard genus and property τ for hyperbolic 3-manifolds. J. Topol. 1, 152–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nikolov, N., Pyber, L.: Product decompositions of quasirandom groups and a Jordan type theorem. arXiv:math/0703343

  26. Pyber, L., Szabó, E.: Growth in finite simple groups of Lie type of bounded rank. arXiv:1005.1858

  27. Salehi Golsefidy, A., Varjú, P.P.: Expansion in perfect groups. In preparation

  28. Sarnak, P., Xue, X.X.: Bounds for multiplicities of automorphic representations. Duke Math. J. 64(1), 207–227 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Varjú, P.P.: Expansion in SL d (O K /I), I square-free. J. Eur. Math. Soc. (to appear). arXiv:1001.3664

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Bourgain.

Additional information

J. Bourgain was supported by the NSF grants DMS-0808042 and DMS-0835373.

P.P. Varjú was supported by the Fulbright Science and Technology Award 15073240.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgain, J., Varjú, P.P. Expansion in SL d (Z/q Z), q arbitrary. Invent. math. 188, 151–173 (2012). https://doi.org/10.1007/s00222-011-0345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0345-4

Keywords

Navigation