Skip to main content
Log in

The module theory of semisymmetric quasigroups, totally symmetric quasigroups, and triple systems

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

This paper initiates a unified module theory for four varieties of quasigroups: semisymmetric, semisymmetric idempotent, totally symmetric, and totally symmetric idempotent. These classes correspond, respectively, to extended Mendelsohn triple systems, Mendelsohn triple systems (MTS), extended Steiner triple systems, and Steiner triple systems (STS), which, in turn, correspond to partitions of complete (directed) graphs. Letting \({\mathbf {V}}\) stand for any of the aforementioned quasigroup categories, we determine a ring, \({\mathbb {Z}}{\mathbf {V}}\!{Q}\), such that abelian groups in the slice category \({\mathbf {V}}\!/\!{Q}\) are equivalent to (right) \({\mathbb {Z}}{\mathbf {V}}\!{Q}\)-modules. This ring is a quotient of the group algebra of the so-called universal stabilizer of the \({\mathbf {V}}\)-quasigroup Q. We prove that the universal stabilizer of Q in \({\mathbf {V}}\) is the fundamental group of either the graph from which the triple system sources its blocks, or a closely related space. In each of the four varieties, we provide a free product description of \({\mathbb {Z}}{\mathbf {V}}\!{Q}\), and show that the factorizations are indexed by blocks of the triple system. We also consider the ranks of free group rings that appear in the coproduct for \({\mathbb {Z}}{\mathbf {V}}\!{Q}\) (for the cases \({\mathbf {V}}=\mathbf {MTS}, \mathbf {STS}\)), and we describe these ranks in terms of pentagonal numbers. We establish a relationship between the module theory of MTS and commutative Moufang loops of exponent 3. As an application, we show how the MTS module theory completely accounts for the distributive, nonmedial quasigroups of order 81.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. This notion of triality should not be conflated with the, perhaps better known, triality inherent to the class of quasigroups known as Moufang loops [16]. Moufang loop triality is related to the, certainly better known, phenomenon of triality in Lie groups and the Dynkin diagram \(D_4\).

  2. Not all medial quasigroups are idempotent, but the representation theory of nonidempotent, medial quasigroups requires extra automorphisms and constants (cf. [50]) we wish to avoid discussing.

  3. At the confluence of universal algebra and category theory, it is important to regard the empty set as a quasigroup (cf. the introduction of [3]).

  4. Since the initial submission of this work, this claim has been further substantiated by the fact that the ambient space for Kanevsky’s construction of a nonassociative CML on a cubic hypersurface is the extension \({\mathbb {Q}}_{(3)}(\omega )\) of the 3-adic rationals by a cubic root of unity.

References

  1. Andruskiewitsch, N., Graña, M.: From racks to pointed Hopf algebras. Adv. Math. 178, 177–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aschbacher, M.: \(3\)-Transposition Groups. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. Barr, M.: The point of the empty set. Cah. Topol. Géom. Différ. Catég. 13, 357–368 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Beck, J.M.: Triples Algebras and Cohomology. Ph.D. thesis, Columbia University 1967. In: Reprints in Theory and Applications of Categories 2, 1–59 (2003)

  5. Beidar, K.I., Martindale, W.S., Mikhalev, A.V.: Rings with Generalized Identities. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  6. Belousov, V.D.: On the structure of distributive quasigroups (Russian). Mat Sb. (N.S.) 50, 276–298 (1960)

    Google Scholar 

  7. Bennett, F.E.: Extended cyclic triple systems. Discrete Math. 24, 139–146 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Philos. Soc. 32, 433–454 (1935)

    Article  MATH  Google Scholar 

  10. Bruck, R.H.: A Survey of Binary Systems. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  11. Castellana, V.E., Raines, M.E.: Embedding extended Mendelsohn triple systems. Discrete Math. 252, 47–55 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs. Chapman and Hall, CRC, Boca Raton (2006)

    Google Scholar 

  13. Colbourn, C.J., Rosa, A.: Directed and Mendelsohn triple systems. In: Contemporary Design Theory: A Collection of Surveys, pp. 97–136. Wiley, Hoboken (1992)

    MATH  Google Scholar 

  14. Colbourn, C.J., Rosa, A.: Triples Systems. Clarendon Press, Oxford (1999)

    MATH  Google Scholar 

  15. Crowell, R.H.: The derived group of a permutation representation. Adv. Math. 53, 99–124 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Doro, S.: Simple Moufang loops. Math. Proc. Camb. Philos. Soc. 83, 377–392 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Doyen, J., Wilson, R.M.: Embeddings of Steiner triple systems. Discrete Math. 5, 229–239 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Euler, L.: J. Bell (trans.) On the Remarkable Properties of the Pentagonal Numbers (2005). arXiv No. arXiv: math/0505373

  19. Evans, T.: On multiplicative systems defined by generators and relations. Proc. Camb. Philos. Soc. 47, 637–649 (1951)

    Article  MATH  Google Scholar 

  20. Freyd, P.J.: Abelian Categories: An Introduction to the Theory of Functors. Harper and Row, New York (1964)

    MATH  Google Scholar 

  21. Fuad, T.S.R., Smith, J.D.H.: Quasigroups, right quasigroups, and category coverings. Algebra Univ. 35, 233–248 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grishkov, A.N., Shestakov, I.P.: Commutative Moufang loops and alternative algebras. J. Algebra 333, 1–13 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hatcher, A.: Algebraic Topology. https://pi.math.cornell.edu/~hatcher/AT/AT.pdf

  24. Jackson, N.: Extensions of racks and quandles. Homology Homotopy Appl. 7, 151–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jedlička, P., Stanovský, D., Vojtěchovský, P.: Distributive and trimedial quasigroups of order \(243\). Discrete Math. 340, 404–415 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Johnson, K.W., Leedham-Green, C.R.: Loop cohomology. Czechoslov. Math. J. 40, 182–194 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Johnson, D.M., Mendelsohn, N.S.: Extended triple systems. Aequ. Math. 8, 291–298 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kanevsky, D.: An example of a non-associative Moufang loop of point classes on a cubic hypersurface (2021). arXiv:2104.05118

  29. Kepka, T., Němec, P.: Commutative Moufang loops and distributive groupoids of small order. Czechoslov. Math. J. 31, 633–669 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lawvere, W.: Functorial Semantics of Algebraic Theories. Ph.D. thesis, Columbia University 1967. In: Reprints in Theory and Applications of Categories 5, 1–59 (2003)

  31. Madariaga, S., Pérez-Izquierdo, J.M.: Linear representations of formal loops. Linear Multilinear Algebra 65, 79–112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Manin, Y.I.: M. Hazewinkel (trans.) Cubic Forms: Algebra, Geometry, and Arithmetic. \(2\)nd ed., North-Holland, Amsterdam (1986)

  33. Mendelsohn, N.S.: A natural generalization of Steiner triple systems. In: Computers in Number Theory (Proc. Sci. Res. Council Atlas Sympos. no. 2, Oxford, 1969), pp. 323–338. Academic Press, London (1971)

    MATH  Google Scholar 

  34. Mitchell, B.: The full imbedding theorem. Am. J. Math. 86, 619–637 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  35. Murdoch, D.C.: Structure of abelian quasi-groups. Trans. Amer. Math. Soc. 49, 392–409 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nowak, A.W.: Affine Mendelsohn triple systems and the Eisenstein integers. J. Combin. Des. 28, 724–744 (2020)

    Article  MathSciNet  Google Scholar 

  37. Nowak, A.W.: Linear Aspects of Equational Triality in Quasigroups, Ph.D. thesis, Iowa State University (2020)

  38. Nowak, A.: Modules over semisymmetric quasigroups. In: Vojtechovský, P. et al. (eds.) Nonassociative Mathematics and its Applications. Contemporary Mathematics 721, pp. 199–211. American Mathematical Society, Providence (2019)

  39. OEIS Foundation Inc., The On-line Encyclopedia of Integer Sequences (2020). http://oeis.org

  40. Raines, M.E., Rodger, C.A.: Embedding partial extended triple systems and totally symmetric quasigroups. Discrete Math. 176, 211–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rodger, C.A.: Embedding partial Mendelsohn triple systems. Discrete Math. 65, 187–196 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Serre, J.P.: Trees. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  43. Smith, J.D.H.: Commutative Moufang loops and Bessel functions. Invent. Math. 67, 173–187 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Smith, J.D.H.: Evans’ normal form theorem revisited. Internat. J. Algebra Comput. 17, 1577–1592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Smith, J.D.H.: An Introduction to Quasigroups and Their Representations. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  46. Smith, J.D.H.: Mal’cev Varieties. Springer Lecture Notes in Mathematics, no. 554, Berlin (1976)

  47. Smith, J.D.H.: On the nilpotence class of commutative Moufang loops. Math. Proc. Camb. Philos. Soc. 84, 387–404 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  48. Smith, J.D.H.: Representation Theory of Infinite Groups and Finite Quasigroups. Presses de l’Université de Montréal, Montreal (1986)

    MATH  Google Scholar 

  49. Stanovský, D.: A guide to self-distributive quasigroups, or Latin quandles. Quasigroups Relat. Syst. 23, 91–128 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Stanovský, D., Vojtěchovský, P.: Central and medial quasigroups of small order. Bul. Acad. Stiinte Repub. Mold. Mat. 80, 24–40 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Toyoda, K.: On axioms of linear functions. Proc. Imp. Acad. Tokyo 17, 221–227 (1941)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was partially supported by the Fulbright US Scholar Program through the US Department of State’s Bureau of Educational and Cultural Affairs (Award 11590-EZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex W. Nowak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowak, A.W. The module theory of semisymmetric quasigroups, totally symmetric quasigroups, and triple systems. J Algebr Comb 56, 565–607 (2022). https://doi.org/10.1007/s10801-022-01124-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01124-3

Keywords

Navigation